Glucosylated Polyethylenimine as a Tumor-Targeting Gene Carrier

  • Park In-Kyu (School of Agricultural Biotechnology, Seoul National University) ;
  • Cook Seung-Eun (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim You-Kyoung (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim Hyun-Woo (School of Agricultural Biotechnology, Seoul National University) ;
  • Cho Myung-Haing (School of Agricultural Biotechnology, Seoul National University) ;
  • Jeong Hwan-Jeong (Department of Nuclear Medicine, Chonbuk National University) ;
  • Kim Eun-Mi (Department of Nuclear Medicine, Chonbuk National University) ;
  • Nah Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Bom Hee-Seung (Department of Nuclear Medicine, Chonnam National University School of Medicine) ;
  • Cho Chong-Su (School of Agricultural Biotechnology, Seoul National University)
  • 발행 : 2005.11.01

초록

Glucosylated polyethylenimine (GPEI) was synthesized as a tumor-targeting gene carrier through facilitative glucose metabolism by tumor glucose transporter. Particle sizes of GPEI/DNA complex increased in proportion to glucose content of GPEI, whereas surface charge of the complex was not dependent on glucosylation, partially due to inefficient shielding of the short hydrophilic group introduced. GPEI with higher glucosylation (36 mol-$\%$) had no cytotoxic effect on cells even at polymer concentrations higher than 200 $\mu$g/mL. Compared to unglucosylated PEl. glucosylation induced less than one-order decrease of transfection efficiency. Transfection of GPEI/DNA complex into tumor cells possibly occurred through specific interaction between glucose-related cell receptors and glucose moiety of GPEI. Gamma imaging technique revealed GPEI/DNA complex was distributed in liver. spleen. and tumors.

키워드

참고문헌

  1. Ahn, C. H., Chae, S. Y., Bae, Y. H., and Kim, S. W., Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J. controlled Rel., 97, 567-574 (2004)
  2. Aoki, K., Furuhata, S., Hatanaka, K., Maeda, M., Remy, J. S., Behr, J. P., Terada, M., and Yoshida, T., Polyethyleniminemediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther., 8, 508-514 (2001) https://doi.org/10.1038/sj.gt.3301435
  3. Baban, D. F. and Seymour, L. W., Control of tumour vascular permeability. Adv. Drug Deliv. Rev., 16, 285-294 (1995) https://doi.org/10.1016/0169-409X(95)00030-B
  4. Bettinger, T., Remy, J. S., and Erbacher, P., Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated transfer into hepatocytes. Bioconjugate Chem., 10, 1243- 1251 (1999) https://doi.org/10.1021/bc990006h
  5. Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U.S.A., 92, 7297-7301 (1995) https://doi.org/10.1073/pnas.92.16.7297
  6. Chen, J., Gamou, S., Takayanagi, A., and Shimizu, N., A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett., 338, 167-169 (1994) https://doi.org/10.1016/0014-5793(94)80357-9
  7. Dang, C. V. and Semenza, G. L., Oncogenic alterations of metabolism. Trends Biochem. Sci., 24, 68-72 (1999) https://doi.org/10.1016/S0968-0004(98)01344-9
  8. Densmore, C. L., Orson, F. M., Xu, B., Kinsey, B. M., Waldrep, J. C., Hua, P., Bhogal, B., and Knight, V., Aerosol delivery of robust polyethylenimine-DNA complexes for gene therapy and genetic immunization. Mol. Ther., 1, 180-188 (2000) https://doi.org/10.1006/mthe.1999.0021
  9. Dolivet, G., Merlin, J. L., Barbeli-Heyob, M., Ramacci, C., Erbacher, P., Parache, R. M., Behr, J. P., and Guillemin, F., In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther., 9, 708-714 (2002) https://doi.org/10.1038/sj.cgt.7700485
  10. Erbacher, P., Bousser, M. T., Raimond, J., Monsigny, M., Midoux, P., and Roche, A. C., Gene transfer by DNA/glycosylated polylysine complexed into human blood monocyte-derived macrophages. Hum. Gene Ther., 10, 721-729 (1996) https://doi.org/10.1089/hum.1996.7.6-721
  11. Ferkol, T., Kaetzel, C. S., and Davis, P. B., Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor. J. Clin. Invest., 92, 2394-2400 (1993) https://doi.org/10.1172/JCI116845
  12. Ferkol, T., Perales, J. C., Mularo, F., and Hanson, R., Receptormediated gene transfer into macrophages. Proc. Natl. Acad. Sci. U.S.A., 93, 101-105 (1996) https://doi.org/10.1073/pnas.93.1.101
  13. Hatanaka, M., Transport of sugars in tumor membranes. Biochem. Biophys. Acta, 355, 77-104 (1974)
  14. Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A., 95, 4607- 4612 (1998) https://doi.org/10.1073/pnas.95.8.4607
  15. Kim, H. W., Park, I. K., Cho, C. S., Lee, K. H., Beck Jr, G. R., Colburn, N. H., and Cho, M. H., Aerosol delivery of glucosylated polyethylenimine (GPEI)/PTEN complex suppresses Akt downstream pathways in the lung of K-ras null mice. Cancer Res., 64, 7671-7676 (2004)
  16. Kircheis, R., Wightman, L., Schreiber, A., Robitza, B., Rossler, V., Kursa, M., and Wagner, E., Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther., 8, 28-40 (2001) https://doi.org/10.1038/sj.gt.3301351
  17. Kunath, K., Harpe, A. V., Fischer, D., and Kissel, T., Galactose- PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J. Controlled Rel., 88, 159-172 (2003) https://doi.org/10.1016/S0168-3659(02)00458-3
  18. Kursa, M., Walker, G. F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., and Wagner, E., Novel shielded transferrinpolyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjugate Chem., 14, 222-231 (2003) https://doi.org/10.1021/bc0256087
  19. Leamon, C. P., Weigl, D., and Hendren, R. W., Folate copolymer-mediated transfection of cultured cells. Bioconjugate Chem., 10, 947-957 (1999) https://doi.org/10.1021/bc990066n
  20. Luciani, A., Olivier, J. C., Clement, O., Siauve, N., Brillet, P. Y., Bessoud, B., Gazeau, F., Uchegbu, I. F., Kahn, E., Frija, G., and Cuenod, C. A., Glucose-receptor MR imaging of tumor: study in mice with pegylated paramagnetic niosomes. Radiology, 231, 135-142 (2004) https://doi.org/10.1148/radiol.2311021559
  21. Merlin, J. L., Dolivet, G., Dubessy, C., Festor, E., Parache, R. M., Verneuil, L., Erbacher, P., Behr, J. P., and Guillemin, F., Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives. Cancer Gene Ther., 8, 203-210 (2001) https://doi.org/10.1038/sj.cgt.7700289
  22. Monsigny, M., Petit, C., and Roche, A. C., Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal. Biochem., 175, 525-530 (1988) https://doi.org/10.1016/0003-2697(88)90578-7
  23. Noguchi, Y., Saito, A., Miyagi, Y., Yamanaka, S., Marat, D., Doi, C., Yoshikawa, T., Tsuburaya, A., Ito, T., and Satoh, S., Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth. Cancer Lett., 154, 175-182 (2000) https://doi.org/10.1016/S0304-3835(00)00392-X
  24. Nomura, T., Nakajima, S., Kawabata, K., Yamashita, F., Takakura, Y., and Hashita, M., Intratumoral pharmacokinetics and in-vivo gene expression of naked plasmid DNA and its cationic liposome complexes after direct gene transfer. Cancer Res., 57, 2681-2686 (1997)
  25. Ogris, M., Brunner, S., Schuller, S., Kircheis, R., and Wagner, E., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther., 6, 595-605 (1999) https://doi.org/10.1038/sj.gt.3300900
  26. Ogris, M. and Wagner, E., Targeting tumors with non-viral gene delivery systems. Drug Discovery Today, 15, 479-485 (2002)
  27. Ogris, M. and Wagner, E., Tumor-targeted gene transfer with DNA polyplexes. Somat. Cell Mol. Genet., 27, 85-95 (2002) https://doi.org/10.1023/A:1022988008131
  28. Oupicky, D., Ogris, M., and Seymour, L., Development of longcirculating polyelectrolyte complexes for systemic delivery of genes. J. Drug Targeting, 10, 93-98 (2002) https://doi.org/10.1080/10611860290016685
  29. Park, I. K., Park, Y. H., Shin, B. A., Choi, E. S., Kim, Y. R., Akaike, T., and Cho, C. S., Galactosylated chitosan-graftdextran as hepatocyte-targeting DNA carrier. J. Controlled Rel., 69, 97-10 (2000) https://doi.org/10.1016/S0168-3659(00)00298-4
  30. Park, I. K., Kim, T. H., Park, Y. H., Shin, B. A., Choi, E. S., Chowdhury, E. H., Akaike, T., and Cho, C. S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J. Controlled Rel., 76, 349-362 (2001) https://doi.org/10.1016/S0168-3659(01)00448-5
  31. Park, I. K., Ihm, J. E., Park, Y. H., Choi, Y. J., Kim, S. I., Kim, W. J., Akaike, T., and Cho, C. S., Preparation and characterization of galactosylated chitosan-graft-poly(vinyl pyrrolidone) as hepatocyte-targeting gene carrier. J. Controlled Rel., 86, 349- 359 (2003a) https://doi.org/10.1016/S0168-3659(02)00365-6
  32. Park, I. K., Kim, T. H., Kweon, H. Y., Park, Y. H., Kim, W. J., Akaike, T., and Cho, C. S., Visualization of transfection of galactosylated chitosan-graft-poly(ethylene glycol)/DNA complexes into hepatocytes by confocal Laser Scanning Microscopy. Int. J. Pharm., 257, 103-110 (2003b) https://doi.org/10.1016/S0378-5173(03)00133-9
  33. Park, I. K., Yang, J., Jeong, H. J., Bom, H. S., Harada, I., Akaike, T., Kim, S. I., and Cho, C. S., Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials, 24, 2331-2337 (2003c) https://doi.org/10.1016/S0142-9612(03)00108-X
  34. Pedersen, P. L., Mathupala, S., Rempel, A., Geschwind, J. F., and Ko, Y. H., Mitochondrila bound type hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochem. Biophys. Acta, 1555, 14-20 (2002) https://doi.org/10.1016/S0005-2728(02)00248-7
  35. Pelisek, J., Engelmann, M. G., Golda, A., Fuchs, A., Armeanu, S., Shimizu, M., Mekkaoui, C., Rolland, P. H., and Nikol, S., Optimization of nonviral transfection: variables influencing liposome-mediated gene transfer in proliferating vs. quiescent cells in culture and in vivo using a porcine restenosis model. J. Mol. Med., 80, 724-736 (2002) https://doi.org/10.1007/s00109-002-0368-9
  36. Rudolph, C., Lausier, J., Naundorf, S., Muller, R. H., and Rosenecker, J., In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med., 2, 269-278 (2000) https://doi.org/10.1002/1521-2254(200007/08)2:4<269::AID-JGM112>3.0.CO;2-F
  37. Wagner, E., Zenke, M., Cotten, M., Beug, H., and Birnsteil, M. L., Transferrin-polycation conjugates as Carriers for DNA Uptake into Cells. Proc. Natl. Acad. Sci. U.S.A., 87, 3410- 3414 (1990) https://doi.org/10.1073/pnas.87.9.3410
  38. Wang, S., Ma, N., Gao, S.J., Yu, H., and Leong, K. W., Transgene expression in the brain stem effected by intramuscular injection of polyethylenimine/DNA complexes. Mol. Ther., 3, 658-664 (2001) https://doi.org/10.1006/mthe.2001.0324
  39. Wheeler, T. J. and Hinkle, P. C., The glucose transporter of mammalian cells. Ann. Rev. Physiol., 47, 503-517 (1985) https://doi.org/10.1146/annurev.ph.47.030185.002443