Synthesis and Characterization of Co-Surfactant Templated Mesoporous Materials with Enhanced Hydrothermal Stability

  • Kim Geon-Joong (Department of Chemical Engineering, Inha University) ;
  • Kim Hyun-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Ko Yoon Soo (Department of Polymer Science and Engineering, Inha University) ;
  • Kwon Yong Ku (Department of Polymer Science and Engineering, Inha University)
  • Published : 2005.12.01

Abstract

Ordered mesoporous materials with a hydrothermally-stable, protozeolitic framework were prepared by exploring the direct conversion of inorganic species based on co-surfactant templating systems. To confer hydrothermal stability on the mesoporous aterials, the organic-inorganic hybrids were heat-treated in strongly basic media. Co-surfactant templating systems of cetyltrimethylammonium bromide [$C_{16}H_{13}(CH_{3})_{3}$NBr, CTAB] with 1,3,5-trim­ethylbenzene (TMB) or a nonionic block copolymer of poly(ethylene oxide )-b-poly(propylene oxide )-b-poly(ethyl­ene oxide) ($EO_{20}PO_{70}EO_{20}$) were employed to improve the hydrothermal stability of the organic-inorganic self-assembly during the solid rearrangement process of the inorganic species. The mesoscopic ordering of the pore structure and geometry was identified by X-ray diffraction, small angle neutron scattering and electron microscopy.

Keywords

References

  1. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974
  2. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982
  3. S. T. Wilson, B. M. Lok, C. A. Messina, T. K. Cannan, and E. M. Flanigen, J. Am. Chem. Soc., 104, 1146 (1982) https://doi.org/10.1021/ja00368a062
  4. H. Gies and B. Marler, Zeolites, 12, 42 (1992) https://doi.org/10.1016/0144-2449(92)90008-D
  5. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 352, 710 (1992)
  6. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992) https://doi.org/10.1021/ja00053a020
  7. Q. Huo, R. Leon, P. M. Petroff, and G. D. Stucky, Science, 268, 1324 (1995) https://doi.org/10.1126/science.268.5215.1324
  8. Q. Huo, D. I. Margolese, and G. D. Stucky, Chem. Mater., 8, 1147 (1996) https://doi.org/10.1021/cm960137h
  9. S. Schacht, Q. Huo, I. G. Voight-Martin, G. D. Stucky, and F. Schuth, Science, 273, 768 (1996) https://doi.org/10.1126/science.273.5276.768
  10. J. Aguado, D. P. Serrano, M. D. Romero, and J. M. Escola, Chem. Commun., 725 (1996)
  11. A. Corma, M. S. Grande, V. Gonzalez-Alfaro, and A. V. Orchilles, J. Catal., 159, 375 (1996) https://doi.org/10.1006/jcat.1996.0100
  12. M. S. Whang, Y. K. Kwon, and G.-J. Kim, J. Ind. Eng. Chem., 8, 262 (2002)
  13. S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, Science, 269, 1242 (1995) https://doi.org/10.1126/science.269.5228.1242
  14. S. A. Bagshaw and T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl., 35, 1102 (1996) https://doi.org/10.1002/anie.199611021
  15. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998) https://doi.org/10.1021/ja974025i
  16. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998) https://doi.org/10.1126/science.279.5353.998
  17. G. S. Attard, J. C. Glyde, and C. G. Göltner, Nature, 378, 377 (1995)
  18. M. Antonietti and C. G. Göltner, Angew. Chem. Int. Ed. Engl., 36, 516 (1997) https://doi.org/10.1002/anie.199705161
  19. K. R. Kloesstra, H. W. Zandbergen, J. C. Jansen, and H. van Bekkum, Microporous Mater., 6, 287 (1996) https://doi.org/10.1016/0927-6513(96)00036-3
  20. K. R. Kloesstra, H. van Bekkum, and J. C. Jansen, Chem. Commum., 2281 (1997)
  21. Y. Liu, W. Zhang, and T. J. Pinnavaia, J. Am. Chem. Soc., 122, 8791 (2000) https://doi.org/10.1021/ja001615z
  22. Y. Liu, W. Zang, and T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl., 40, 1255 (2001) https://doi.org/10.1002/1521-3773(20010105)40:1<1::AID-ANIE1>3.0.CO;2-F
  23. Z. Zhang, Y. L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao, and F.-S. Xiao, Angew. Chem. Int. Ed. Engl., 40, 1258 (2001) https://doi.org/10.1002/1521-3773(20010401)40:7<1258::AID-ANIE1258>3.0.CO;2-C
  24. L. Huang, W. Guo, P. Deng, Z. Xue, and Q. Li, J. Phys. Chem., 104, 2817 (2000) https://doi.org/10.1021/jp990861y
  25. R. Ryoo, J. M. Kim, and C. H. Shin, J. Phys. Chem., 100, 17718 (1996) https://doi.org/10.1021/jp9620835
  26. A. Karlsson, M. Stöcker, and R. Schmidt, Micropor. Mesopor. Mater., 27, 181 (1999) https://doi.org/10.1016/S1387-1811(98)00252-2
  27. A. Karlsson, M. Stöcker, and K. Schafer, Stud. Surf. Sci. Catal., 125, 61 (1999) https://doi.org/10.1016/S0167-2991(99)80197-9
  28. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature, 396, 152 (1998) https://doi.org/10.1038/24132
  29. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Chem Mater., 11, 2813 (1999) https://doi.org/10.1021/cm990185c