Derepression of a Methionine Biosynthetic Gene by Utilizing a Promoter Isolated from Corynebacterium glutamicum

Corynebacterium glutamicum에서 분리된 프로모터를 이용한 메치오닌 생합성 유전자의 조절해제

  • 박수동 (고려대학교 생명공학원) ;
  • 박익현 (고려대학교 생명공학원) ;
  • 최종수 (한국 BASF 기술연구소) ;
  • 김일권 (한국 BASF 기술연구소) ;
  • 김연희 (세명대학교 한의과대학 한의학과) ;
  • 이흥식 (고려대학교 과학기술대학 생명정보공학과)
  • Published : 2005.12.01

Abstract

A transcriptionally active fragment $(P_{19})$ isolated by utilizing the promoter-probe shuttle vector pSK1Cat was analyzed. By subcloning analysis, the 180 bp region $(P_{180})$ responsible for the activity was determined. Transcriptional fusion of the C. glutamicum metX gene to $P_{180}\;(P_{180}-metX)$ resulted in a 24-fold increase in MetX activity in a complex medium, while a 13-fold increase was observed with the $P_{tac}$ promoter. Additionally, the expression conferred by $P_{180}$ was not affected by methionine added to the growth medium, suggesting that the $P_{180}$ clone is useful for the deregulated expression of biosynthetic genes in C. glutamicum during amino acid fermentation. Introduction of $P_{180}-metX$ into a lysine-producing C. glutamicum resulted in the production of methionine to 0.8 g/l.

Corynebacterium glutamicum에서 promoter-probe vector인 pSK1Cat을 이용해 분리된 프로모터를 함유하는 단편들 중 가장 높은 활성을 나타낸 $P_{19}$ 단편에 대한 심도 있는 분석을 수행하였다. Subcloning을 실시하여 프로모터 활성을 지닌 DNA 영역을 180 bp로 압축할 수 있었고 $(P_{180})$, 이를 C. glutamicum의 균주개량 측면에서 그 활용성을 분석하였다. C. glutamicum에서 메치오닌 생합성에 관여하는metX유전자의 메치오닌에 의한 repression을 해제시키기 위하여 metX유전자의 promoter를 $P_{180}$ promoter로 교체하였고 $(P_{180}-metX)$, $P_{180}-metX$를 C. glutamicum에 도입하여 발현되는 homoserine acetyltransferase 활성을 다양한 성장조건에서 측정하였다. MB 영양배지에서 배양하는 경 우 $P_{180}-metX$를 함유는 균주는 wild type보다 약 24배 높은 homoserine acetyltransferase 활성을 나타내었다. Tac 프로모터에 연계하는 경우 $(P_{tac}-metX)$, 약 13배의 활성 증가만이 관찰되었다. 최소배지에서 배양한 후 분석한 결과, $P_{180}-metX$에서의 발현양상은 배지에 첨가된 methionine에 의해 영향받지 앓음을 확인하였는데, 이는 $P_{180}$ 단편이 생합성 유전자의 derepression에 의한 아미노산 생산균의 개량에 효율적으로 이용될 수 있음을 의미한다. $P_{180}-metA$를 라이신 생산균에 도입하는 경우 최대 약 0.8g/l의 메치오닌이 생산됨을 확인하였다.

Keywords

References

  1. Bradford, M.M., 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Cremer, J., L. Eggeling, and H. Sahm. 1991. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl. Environ. Microbiol. 57, 1746-1752
  3. Eikmanns, B.J., E. Kleinertz, W. Liebl, and H. Sahm. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102, 93-98 https://doi.org/10.1016/0378-1119(91)90545-M
  4. Follettie, M.T. and A.J. Sinskey. 1986. Recombinant DNA technology for Corynebacterium glutamicum. Food Technol. 40, 88-94
  5. Follettie, M.T., O. Peoples, C. Agoropoulou, and A.J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13. ask-asd operon J. Bacteriol. 175, 4096-4103 https://doi.org/10.1128/jb.175.13.4096-4103.1993
  6. Hwang B.J., Y. Kim, H.B. Kim, H.J. Hwang, J.H. Kim, and H.S. Lee. 1999. Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine ${\gamma}$-synthase. Mol. Cells 9, 300-308
  7. Harley, C.B., and R.P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15, 2343-2361 https://doi.org/10.1093/nar/15.5.2343
  8. Jetten, M.S., and A.J. Sinskey. 1995. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15, 73-103 https://doi.org/10.3109/07388559509150532
  9. Lee H.S., and B.J. Hwang. 2003. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol. 62, 459-467 https://doi.org/10.1007/s00253-003-1306-7
  10. Kim J.W., H.J. Kim, Y. Kim, M.S. Lee, and H.S. Lee. 2001. Properties of the Corynebacterium glutamicum metC gene encoding cystathionine ${\gamma}$-lyase. Mol. Cells 11, 220-225
  11. Meng, W., T. Belyaeva, N.J. Savery, S.J. Busby, W.E. Ross, T. Gaal, R.L. Gourse, and M.S. Thomas. 2001. UP element dependent transcription at the Escherichia coli rrnBP1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Nucleic Acids Res. 29, 4166-4178 https://doi.org/10.1093/nar/29.20.4166
  12. Menkel, E., G. Thierbach, L. Eggeling, and H. Sahm. 1989. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl. Environ. Microbiol. 55, 684-688
  13. Paik, J.E., and B.R. Lee. 2003. Isolation of transcription initiation signals from Corynebacterium ammoniagenes and comparison of their gene expression levels in C. ammoniagenes and Escherichia coli. Biotechnol. Lett. 25, 1311-1316 https://doi.org/10.1023/A:1024947222046
  14. Park, S.D., J.Y. Lee, Y. Kim, J.H. Kim, and H.S. Lee. 1998. Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol. Cells 8, 286-294
  15. Park, S.D., S.N. Lee, I.H. Park, J.S. Choi, W.K. Jeong, Y. Kim, and H.S. Lee. 2004 Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Mcrobiol. Biotechnol. 14, 789-795
  16. Patek, M., B.J. Eikmanns, and H. Sahm. 1996. Promoters from Corynebacterium glutamicum, molecular analysis and search for a consensus motif. Microbiology 142, 1297-1309 https://doi.org/10.1099/13500872-142-5-1297
  17. Patek, M., J. Hochmannova, M. Jelinkova, J. Nesvera, and L. Eggeling. 1998. Analysis of the leuB gene from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 50, 42-47 https://doi.org/10.1007/s002530051254
  18. Patek, M., G. Muth, and W. Wohlleben. 2003a. Function of Corynebacterium glutamicum promoters in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. J. Biotechnol. 104, 325-334 https://doi.org/10.1016/S0168-1656(03)00159-7
  19. Patek, M., J. Nesvera, A. Guyonvarch, O. Reyes, and G. Leblon. 2003b. Promoters of Corynebacterium glutamicum. J. Biotechnol. 104, 311-323 https://doi.org/10.1016/S0168-1656(03)00155-X
  20. Perez-Martin, J., F. Rojo, and V. de Lorenzo. 1994. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol. Rev. 58, 268-290
  21. Ross, W., K.K Gosink, J. Salomon, K. Igarashi, C. Zou, A. Ishihama, K. Severinov, and R.L. Gourse. 1993. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262, 1407-1413 https://doi.org/10.1126/science.8248780
  22. Sahm, H., L. Eggeling, B.J. Eikmanns, and R. Kramer. 1995. Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol. Rev. 16, 243-252 https://doi.org/10.1111/j.1574-6976.1995.tb00171.x
  23. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989, 2002. Molecular cloning-a laboratory manual. Cold Spring Harbor Laboratory, 2nd ed., Cold Spring Harbor, N. Y
  24. Schrumpf, B., L. Eggeling, and H. Sham. 1992. Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 37, 566-571
  25. Shaw, W.V. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods. Enzymol. 43, 737-755 https://doi.org/10.1016/0076-6879(75)43141-X
  26. Von der Osten, C.H., C.K. Gionnetti, and A.J. Sinskey. 1989. Design of defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 11, 11-16 https://doi.org/10.1007/BF01026778
  27. Yoshihama, M., K. Higashiro, E.A Rao, M. Akedo, W.G. Shanabruch, M.T. Follettie, G.C. Walker, and A.J. Sinskey, 1985. Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162, 591-597