발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현

Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum

  • 우영은 (충남대학교 자연과학대학 생화학과) ;
  • 김소영 (충남대학교 자연과학대학 생화학과) ;
  • 이찬용 (충남대학교 자연과학대학 생화학과)
  • Woo Young-Eun (Department of Biochemistry, Chungnam National University) ;
  • Kim So-Young (Department of Biochemistry, Chungnam National University) ;
  • Lee Chan-Yong (Department of Biochemistry, Chungnam National University)
  • 발행 : 2005.12.01

초록

Lumazine protein은 lux operon의 하류 영역에 존재하는 riboflavin synthase와 아미노산 상동성을 보일 뿐만 아니라, riboflavin synthase의 기질인 6,7-dimethyl-8-ribityllumazine (lumazine)과 결합하여 청록색의 형광을 내게 하는 형광 단백질이다. 발광세균 Photobacterium phosphoreum의 lumazine protein을 코드하는 유전자의 염기서열을 결정하였는데, 이 유전자는 lux operon의 656 bp 상류의 영역에 존재하며, lux operon과는 서로 반대 방향으로 전사되는 것으로 나타났다. 중합효소 연쇄 반응(PCR: Polymerase Chain Reaction)의 방법으로 아미노-말단 절반 lumazine protein을 코드하게 되는 유전자(lumP-N)를 클로닝하여 형질전환의 방법으로 대장균에 유전자를 전이시켜 이들의 유전자의 발현 양상을 조사하여 보았는바, lumP 전체 유전자(lumP-W)가 삽입되어 있는 재조합 플라스미드에서는 발현이 매우 미약한 반면에 아미노 -말단(lumP-N)이 들어있는 경우는 과발현됨을 보였다.

In this study, the amino-terminal half truncated lump and the whole lump genes from Photobacterium phosphoreum coding for the lumazine protein were cloned by polymerase chain reaction and expressed in Escherichia coli. To identifiy of the binding site of the ligand or substrate, the amino acid identities from the sequences of the lumazine protein, yellow fluorescent protein, and riboflavin synthase from different organisms were also compared and analyzed.

키워드

참고문헌

  1. Bacher, A. 1990. Biosynthesis of flavins. In Chemistry and Biochemistry of flavoenzymes (Muller, F. ed.) vol. I, CRC press, Boca Raton, FL., pp. 215-259
  2. Baldwin, T.O., M.L. Treat, and S.C. Daubner. 1990. Cloning and expression of luxY gene from Vibrio fischeri in Escherichia coli and complete amino acid sequence of yellow fluorescent protein. Biochemistry 29, 5509-5515 https://doi.org/10.1021/bi00475a014
  3. Eberhardt, S., N. Zingler, K. Kempter, G. Richter, M. Cushman, and A. Bacher. 2001. Domain structure of riboflavin synthase. Eur. J. Biochem. 268, 4315-4323 https://doi.org/10.1046/j.1432-1327.2001.02351.x
  4. Gast, R and J. Lee. 1978. Isolation of in vivo emitter in bacterial bioluminescence. Proc. Natl. Acad Sci. USA 75, 833-837
  5. Hastings, J.W. and K.H. Nealson. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549-545 https://doi.org/10.1146/annurev.mi.31.100177.003001
  6. Koka, P. and J. Lee. 1979. Separation and structure of prosthetic group of the blue fluorescent protein from the bioluminescent bacterium Photobacterium phosphoreum. Proc. Natl. Acad Sci. USA 76, 3068-3072
  7. Laemmli, U.K. 1970. Cleavage of the structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  8. Lee, C.Y. and E.A. Meighen. 1992. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Eur. J. Biochem. 201, 161-167 https://doi.org/10.1111/j.1432-1033.1991.tb16269.x
  9. Lee, C.Y., D.J. O'Kane, E.A. Meighen. 1994. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J. Bacteriol. 176, 2100-2104 https://doi.org/10.1128/jb.176.7.2100-2104.1994
  10. Lee, C.Y. 2000. Expression of the genes involved in the synthesis of riboflavin from Photobacterium species of bioluminescent marine bacteria. Kor. J. Microbiol. 36, 1-7
  11. Lee, C.Y. and E.A. Meighen. 2000. The expression and DNA sequence of the gene coding for the lux specific fatty acyl-CoA reductase from Photobacterium phosphoreum. J. Microbiol. 38, 80-87
  12. Lee, C.Y. and J.H. Im. 2002. The functions of riboflavin genes in the lux operon from Photobacterium species. Kor. J. Microbiol. 38, 173-179
  13. Lee, J. 1993. Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys. Chem. 48, 149-158 https://doi.org/10.1016/0301-4622(93)85006-4
  14. Lin, J. W., Y.F. Chao, and S.F. Weng. 1993. The lumazine proteinencoding gene in Photobacterium leiognathi is linked to lux operon. Gene 126, 153-154 https://doi.org/10.1016/0378-1119(93)90605-3
  15. Meighen, E.A. 1988. Enzymes and genes from the lux operons of bioluminescent bacteria. Annu. Rev. Microbiol. 42, 151-179 https://doi.org/10.1146/annurev.mi.42.100188.001055
  16. Meighen, E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123-142
  17. Meighen, E.A. 1994. Genetics of bacterial of bioluminescence. Annu. Rev. Genet. 28, 117-139 https://doi.org/10.1146/annurev.ge.28.120194.001001
  18. Mironov., V.N., M.L. Chikandas, A.S. Kraev, A.I. Stepanov, and K.G. Skryabin. 1989. Operon organization of genes of riboflavin biosysthesis in Bacillus subtilis. Dokl. Akad. Nauk. SSSR 312, 237-240
  19. O'Kane, D.J., A.J. Karle, and J. Lee. 1985. Purification of lumazine protein from Photobacterium leiognathi Normal Photobacterium phosphoreum: Bioluminescence properties. Biochemistry 24, 1454-1455
  20. O'Kane, D.J., and J. Lee. 1985. Chemical characterization of lumazine protein from Photobacterium leiognathi: Comparison with lumazine protein from Photobacterium phosphoreum. Biochemistry 24, 1467-1475 https://doi.org/10.1021/bi00327a027
  21. O'Kane, D.J., B. Woodward, J. Lee, and D.C. Prasher. 1991. Borrowed proteins in bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 88, 1100-1104
  22. O'Kane, D.J. and D.C. Prasher. 1992. Evolutionary origins of bacterial bioluminescence. Mol. Microbiol. 6, 443-449 https://doi.org/10.1111/j.1365-2958.1992.tb01488.x
  23. Petushkov, V.N., B.G. Gibson, and J. Lee. 1995. Properties of recombinant fluorescent protein from Photobacterium leiognathi and their interaction with luciferase intermediates. Biochemistry 34, 3300-3309 https://doi.org/10.1021/bi00010a020
  24. Schott, K., J. Kellerman, F. Lottspeich, and A. Bacher. 1990. Ribo flavin synthase of Bacillus subtilis. Purification and amino acid sequence of the ${\alpha}$ subunit. J. Biol. Chem. 265, 4204-4209
  25. Stuber, D., H. Matile, and G. Garotta. 1990. System for high level production in Escherichia coli and rapid purification of recombinant proteins. Application to epitope mapping, preparation of antibodies, and structure function analysis. In Immunological Methods IV (Lefkovits, I. and Pernis, P., eds), pp 121-152
  26. Sung, N.D. and C.Y. Lee. 2004. Coregulation of lux genes and riboflavin genes in bioluminescent bacteria of Photobacterium phosphoreum. J. Microbiol., 42, 194-199