Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response

  • Published : 2005.12.01

Abstract

The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.

Keywords

References

  1. Bork, P., K. Hofmann, P. Bucher, A.F. Neuwald, S.F. Altschul, and E.V. Koonin. 1997. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68-76 https://doi.org/10.1096/fasebj.11.1.9034168
  2. Chambers, R.S. and C.M. Kane. 1996. Purification and characterization of an RNA polymerase II phosphatase from yeast. J. Biol. Chem. 271, 24498-24504 https://doi.org/10.1074/jbc.271.40.24498
  3. Chang, A., S. Cheang, X. Espanel, and M. Sudol. 2000. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275, 20562-20571 https://doi.org/10.1074/jbc.M002479200
  4. Cho, E.J., M.S. Kobor, M. Kim, J. Greenblatt, and S. Buratowski. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319-3329 https://doi.org/10.1101/gad.935901
  5. Dahmus, M.E. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009-19012 https://doi.org/10.1074/jbc.271.32.19009
  6. Gavva, N.R., R. Gavva, K. Ermekova, M. Sudol, and C.J. Shen. 1997. Interaction of WW domains with hematopoietic transcription factor p45/NF-E2 and RNA polymerase II. J. Biol. Chem. 272, 24105-24108 https://doi.org/10.1074/jbc.272.39.24105
  7. Hani, J., B. Schelbert, A. Bernhardt, H. Domdey, G. Fischer, K. Wiebauer, and J.U. Rahfeld. 1999. Mutations in a peptidylprolyl- cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J. Biol. Chem. 274, 108-116 https://doi.org/10.1074/jbc.274.1.108
  8. Heo, J.H., S.J. Jeong, J.W. Seol, H.J. Kim, J.W. Han, H.W. Lee, and E.J. Cho. 2004. Differential regulation of gene expression by RNA polymerase II in response to DNA damage. Biochem. Biophy. Res. Comm. 325, 892-898 https://doi.org/10.1016/j.bbrc.2004.10.101
  9. Huibregtse, J.M., J.C. Yang, and S.L. Beaudenon. 1997. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin- protein ligase. Proc. Natl. Acad. Sci. USA 94, 3656-3661
  10. Jona, G., B.O. Wittschieben, J.Q. Svejstrup, and O. Gileadi. 2001. Involvement of yeast carboxy-terminal domain kinase I (CTDK-I) in transcription elongation in vivo. Gene 267, 31-36 https://doi.org/10.1016/S0378-1119(01)00389-4
  11. Kim, S.-J., H.-G. Kim, B.-C. Kim, K. Kim, E.-H. Park, and C.-J. Lim. 2004a. Transcriptional regulation of the gene encoding gglutamylcysteine synthetase from the fission yeast Schizosaccharomyces pombe. J. Microbiol. 42, 233-238
  12. Kim, H.-G., B.-C. Kim, K. Kim, E.-H. Park, and C.-J. Lim. 2004b. Transcriptional regulation of the Schizosaccharomyces pombe gene encoding glutathione S-transferase I by a transcription factor Pap1. J. Microbiol. 42, 353-356
  13. Krishnamurthy, S., X. He, M. Reyes-Reyes, C. Moore, and M. Hampsey. 2004. Ssu72 is an RNA polymerase II CTD phasphatase. Mol. Cell 14, 387-394 https://doi.org/10.1016/S1097-2765(04)00235-7
  14. Licciardo, P., L. Ruggiero, L. Lania, and B. Majello. 2001. Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res. 29, 3539-3545 https://doi.org/10.1093/nar/29.17.3539
  15. Morrihttp://acms.kisti.re.kr/retrieve/ShowPdf.jsp?cn1=JAKO200509409866139&type=2¶m1=¶m2=s, D.P., H.P. Phatnani, and A.L. Greenleaf. 1999. Phosphocarboxyl-terminal domain binding and the role of a prolylisomerase in pre-mRNA 3'-End formation. J. Biol. Chem. 274, 31583-31587 https://doi.org/10.1074/jbc.274.44.31583
  16. Murray, S., R. Udupa, S. Yao, G. Hartzog, and G. Prelich. 2001. Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase. Mol. Cell. Biol. 21, 4089-4096 https://doi.org/10.1128/MCB.21.13.4089-4096.2001
  17. Myers, J.K., D.P. Morris, A.L. Greenleaf, and T.G. Oas. 2001. Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1. Biochemistry 40, 8479-8486 https://doi.org/10.1021/bi0027884
  18. Ostapenko, D. and M.J. Solomon. 2003. Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot. Cell 2, 274-283 https://doi.org/10.1128/EC.2.2.274-283.2003
  19. Patturajan, M., N.K. Conrad, D.B. Bregman, and J.L. Corden. 1999. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J. Biol. Chem. 274, 27823-27828 https://doi.org/10.1074/jbc.274.39.27823
  20. Prelich, G. 2002. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot. Cell 1, 153-162 https://doi.org/10.1128/EC.1.2.153-162.2002
  21. Sterner, D.E., J.M. Lee, S.E. Hardin, and A.L. Greenleaf. 1995. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol. Cell. Biol. 15, 5716-5724 https://doi.org/10.1128/MCB.15.10.5716
  22. Svejstrup, J.Q. 2003. Rescue of arrested RNA polymerase II complexes. J. Cell. Sci. 116, 447-451 https://doi.org/10.1242/jcs.00271
  23. Wang, G., J. Yang, and J.M. Huibregtse. 1999. Functional domains of the Rsp5 ubiquitin-protein ligase. Mol. Cell. Biol. 1, 342-352
  24. Wilcox, C.B., A. Rossettini, and S.M. Hanes. 2004. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Genetics 167, 93-105 https://doi.org/10.1534/genetics.167.1.93
  25. Wu, X., C.B. Wilcox, G. Devasahayam, R.L. Hackett, M. Arevalo-Rodriguez, M.E. Cardenas, J. Heitman, and S.D. Hanes. 2000.The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 19, 3727-3738 https://doi.org/10.1093/emboj/19.14.3727
  26. Wu, X., A. Chang, M. Sudol, and S.D. Hanes. 2001. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function. Curr. Genet. 40, 234-242 https://doi.org/10.1007/s00294-001-0257-8
  27. Yaffe, M.B., M. Schutkowski, M. Shen, X.Z. Zhou, P.T. Stukenberg, J.U. Rahfeld, J. Xu, J. Kuang, M.W. Kirschner, G. Fischer, L.C. Cantley, and K.P. Lu. 1997. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Science 278, 1957-1960 https://doi.org/10.1126/science.278.5345.1957