제올라이트/폴리에틸렌 복합 담체를 이용한 Biotrickling Filter에서 톨루엔 제거 특성

Characteristics of Toluene Removal in a Biotrickling Filter with Zeolite/Polyethylene Composite Media

  • Hong, Sung-Ho (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Chung-Sik (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University)
  • 발행 : 2005.06.30

초록

본 연구에서는 제올라이트/폴리에틸렌 복합 담체를 충진한 biotrickling filter에서 톨루엔 제거특성을 살펴보았다. 본 연구에 사용된 메디아의 물리적 특성을 살펴본 결과 비표면적과 공극율이 각각 $500\;m^2/m^3$, 82%로 나타났으며, 특히 미생물 부착과 생물막 형성에 영향을 주는 표면거칠기는 첨가된 제올라이트에 의해 담체표면이 상당히 거칠어짐을 확인할 수 있었다. 본 담체를 충진한 biotrickling filter 장치에서 톨루엔의 제거효율은 유입농도와 처리유량이 증가할수록 감소하였으며, 톨루엔의 최대 제거용량은 $64\;g/m^3{\cdot}hr$를 보였다. 또한 200일 동안의 연속실험결과, 미생물 순응이 완료된 뒤부터 167일까지 $90{\sim}98%$의 제거효율을 보였으며, 이후 과잉 미생물의 중식으로 인한 압력손실의 증가로 시간에 따라 제거효율은 감소하는 경향을 보였다. 역세척 후 압력강하와 톨루엔 제거능은 신속히 회복되어 정상상태를 유지하였다.

This study was to investigate the removal characteristics of toluene in a gas stream by using a biotrickling filter packed with zeolite-contained polyethylene media. The specific surface area and the void fraction of the media were $500\;m^2/m^3$ and 82%. The surface roughness of the media was higher than that of pure polyethylene media. The toluene removal efficiency decreased with increasing the inlet toluene concentration and gas flow rate. The maximum elimination capacity of toluene in the biotrickling filter was $64\;g/m^3{\cdot}hr$. During 200 days operation, toluene removal efficiency was maintained from 90% to 98% until 167 days, hereafter, it was rapidly reduced with a rise in pressure drop due to an excess proliferation of biomass on the media. Pressure drop and removal capability of the biotrickling filter was fully recovered after backwashing.

키워드

참고문헌

  1. Biodegradation v.4 Biotechniques for air pollution control Groenestijn, J.W.;Hesselink, P.G.M.
  2. Biotechnol. Bioeng. v.50 no.1 Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air Weber, F.J.;Hartmans, S.
  3. Appl. Microbiol Biotechnol. v.48 no.1 Biodegradation dynamics of aromatic compounds from waste air in a trickle-bed reactor Hekmat, D.;Linn, A.;Stephan, M.;Vortmeyer, D.
  4. Biotechnol. Bioeng. v.62 no.2 Biomass control in Waste air biotrickling filters by protozoan predation Cox, H.H.J.;Deshusses, M.A.
  5. Biotechnol. Bioeng. v.27 no.3 Immobilization of Saccharomyces cerevisiae by adhesion: Treatment of the cells by Al ions Van Haecht, J.L.;Bolipombo, M.;Rouxhet, P.G.
  6. Biotechnol. Bioeng. v.30 no.3 Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions Mozes, N.;Marchal, F.;Hermesse, M.P.;Van Baecht, J.L.;Reuliaux, L.;Leonard, A.J.;Rouxhet, P.G.
  7. Unit Operation of Chemical Engineering McCabe, W.L.;Smith, J.C.;Harriott, P.
  8. Dev. Ind. Microbiol. v.13 The adsorption of microorganisms onto solid surfaces: A review Daniels, S.L.
  9. Appl. Environ. Microbiol. v.45 no.3 Influence of substratum wettablity on attachment of freshwater bacteria to solid surfaces Fletcher, M.;Pringle, J.H.
  10. 한국환경과학회지 v.6 no.6 담체의 소수성과 표면거칠기가 미생물 부착에 미치는 영향 박영식;서정호l송승구
  11. Biofilms Characklis, W.G.;Marshall, K.C.
  12. J. Hazard Mater. v.53 no.1 Performance of peat biofilter; Impact of the empty bed residcnce time, temperature and tolucne loading Sorial, G.A.;Smith, F.L.;Suidan, M.T.;Biswas, P.;Brenner, R.C.
  13. J. Biotechnol. v.52 no.1 Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal Chung, Y.C.;Huang, C.;Tseng, C.T.
  14. J. Air Waste Manage. Assoc. v.44 Biofiltration control of hydrogen sulfide. 1. Design and operation parameter Yang, Y.;Allen, E.R.
  15. Biotechnol. Bioeng. v.68 no.5 Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: linking biofilm properties to bioreactor per?formance Song, J.;Kinney, K.A.
  16. Bioprocess Eng. v.6 Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter(part II) Diks, R.M.M.;Ottengrat, S.P.P.
  17. Advances in Environmental Research v.6 no.3 Biofiltration of air contaminated with toluene on a compost-based bed Delhomenie, M.C.;Bibeau, L.;Bredin, N.;Roy, S.;Broussau, S.;Brezezinski, R.;Kugelmass, J.L.;Heitz, M.
  18. Environ. Sci. Technol. v.33 no.17 Treatment of methyl tert-butyl ether vapors in biotrickling filter. 1. reactor startuo. steady-state performance, and culture characteristics Fortin, N.Y.;Deshusses, M.A.
  19. Environ. Sci. Technol. v.30 no.5 Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings Smith, F.L.;Sorial, G.A.;Suidan, M.T.;Breen, A.W.;Biswas, P.