Structural and Chemical Characterization of Aquatic Humic Substances in Conventional Water Treatment Processes

재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석

  • Kim, Hyun-Chul (Water Environment and Remediation Center, Korea Institute of Science and Technology) ;
  • Yu, Myong-Jin (Department of Environmental Engineering, University of Seoul)
  • 김현철 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 유명진 (서울시립대학교 환경공학부)
  • Published : 2005.01.31

Abstract

Humic substances(HS) from raw and process waters at a conventional water treatment plant were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, and spectroscopic characteristics using FT-IR(Fourier transform infrared) and $^1H-NMR$(proton nuclear magnetic resonance) spectroscopy. Humic fraction gradually decreased from 47.2% to 26.4%(from 0.97 to 0.54 mgC/L) through conventional water treatment processes. Concentration of phenolic groups in the HS fraction gradually decreased from 60.5% to 21.8%(from 12.2 to $6.0\;{\mu}M/L$ as phenolic-OH) through water treatment. In the case of carboxylic groups, the concentration increased from 39.5% to 46.9%(from 7.9 to $10.6\;{\mu}M/L$ as COOH) by pre-chlorination, but gradually decreased to 34.2%($9.4\;{\mu}M/L$ as COOH) through sedimentation and sand filtration. From the results of the FT-IR and $^1H-NMR$ spectra of HS, the content of carboxylic groups increased and ratio of aliphatic protons to aromatic protons($P_{Al}/P_{Ar}$) also increased through water treatment, which indicated the increase of aliphatic compounds.

한강을 상수원으로 하는 재래식 정수처리 시설의 각 단위공정으로부터 휴믹물질(HS; humic substances)을 분리하여 작용기 분포, 화학적 조성, FT-IR(Fourier transform infrared) 그리고 $^1H-NMR$(proton nuclear magnetic resonance) 스팩트럼을 분석하여 구조 및 화학적 특성을 평가하였다. HS의 농도분포는 정수처리 동안 47.2%에서 26.4%(0.97 mgC/L에서 0.54 mgC/L)로 단계적으로 감소하였다. HS 중 페놀기(phenolic groups)의 농도분포는 정수처리 동안 60.5%에서 21.8%($12.2{\sim}6.0\;{\mu}M/L$ as phenolic-OH)로 점차 감소하였으며, 카르복실기(carboxylic groups)의 경우 전염소처리 이후 39.5%($7.9\;{\mu}M/L$ as COOH)에서 46.9%($10.6\;{\mu}M/L$ as COOH)로 증가하였지만 응집 침전 그리고 모래여과 이후 34.2%($9.4\;{\mu}M/L$ as COOH)까지 단계적으로 감소하였다. 또한 원소분석과 FT-IR 및 $^1H-NMR$ 분석결과 정수처리 공정을 거치면서 카르복실기의 분율이 증가하고 방향족에 대한 지방족 양성자의 비($P_{Al}/P_{Ar}$)가 증가하는 것으로 조사되어 상대적으로 지방족 화합물의 물질분율이 증가하는 것을 확인하였다.

Keywords

References

  1. Cabaniss, S. E. and Shuman, M. S., 'Copper binding by dissolved organic matter : I. Suwannee river fulvic acid equilibria,' Geochim. Cosmochim. Acta., 52, 185-193 (1988) https://doi.org/10.1016/0016-7037(88)90066-X
  2. Ma, H., Kim, S. D., Cha, D. K., and Allen, H. E., 'Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia,' Environ. Toxicol. Chem., 18, 828-837(1999) https://doi.org/10.1897/1551-5028(1999)018<0828:EOKOCB>2.3.CO;2
  3. Khan, E., Babcock, R. W., Suffet, I. H., and Stenstorm, M. K., 'Biodegradable dissolved organic carbon for indication wastewater reclamation plant performance and treated wastewater quality,' Water Environ. Res., 70, 1033-1040(1998) https://doi.org/10.2175/106143098X123363
  4. Siddiqui, M. S., Amy, G. L., and Murrhy, B. D., 'Ozone enhanced removal of natural organic matter from drinking water source,' Water Res., 31, 3098-3106(1997) https://doi.org/10.1016/S0043-1354(97)00130-9
  5. Peters, R. J. B., de Leer, E. W. B., and de Galan, L., 'Dihaloacetonitriles in Dutch drinking water,' Water Res., 24, 797-800(1990) https://doi.org/10.1016/0043-1354(90)90038-8
  6. Rook, J. J., 'Formation of haloform during chlorination of natural waters,' Water Treat. Exam., 23, 234-243 (1974)
  7. Kim, H. C, Yu, M. J., Myung, G. N., Koo, J. Y., and Kim, Y. H., 'Characterization of Natural Organic Matter in Advanced Water Treatment Processes for DBPs Control,' in Proceedings of the IWA Leading-Edge Conference on Water and Wastewater Treatment Technologies, IWA, Prague, Czech Republic, pp. 67-69(2004)
  8. Yu, M. J., Kim, Y. H., Han, I., and Kim, H. C, 'Ozonation of Han River humic substances,' Water Sci. Technol., 46(11-12), 21-26(2002)
  9. Peuravuori, J. and Pihlaja, K., 'Isolation and characterization of natural organic matter from lake water: comparison of isolation with solid adsorption and tangential membrane filtration,' Environ. Int., 23, 441-451 (1997) https://doi.org/10.1016/S0160-4120(97)00049-4
  10. Amy, G. L., Sierka, R. A., Bedessem, J., Price, D. and Tan, L., 'Molecular size distribution of dissolved organic matter,' J. AWWA, 84(6), 67-75(1992) https://doi.org/10.1002/j.1551-8833.1992.tb07377.x
  11. Collins, M. R. and Vaughan, C. W., 'Characterization of NOM removal by biofiltration: impact of coagulation, ozonation and sand media coating,' Disinfection Byproducts in Water Treatment: The Chemistry of Their Formation and Control, Minear, R.A. and Amy, G.L. (Eds.), CRC Press, Boca Raton, FL, pp. 449-476(1996)
  12. Edwards, M. and Benjamin, M. M., 'Transformation of NOM by ozone and its effect on iron and aluminum solubility,' J. AWWA, 84(6), 56-66(1992)
  13. Amy, G. L., Collins, M. R., Kuo, C. J., and King, P. H., 'Comparing gel permeation chromatography and ultrafiltration for the molecular weight characterization of aquatic organic matter,' J. AWWA, 79(1), 43-49(1987)
  14. Peuravuori, J. and Pihlaja, K., 'Molecular size distribution and spectroscopic properties of aquatic humic substances,' Anal. Chim. Acta., 337, 133-149(1997) https://doi.org/10.1016/S0003-2670(96)00412-6
  15. Peuravuori, J., Paaso, N., and Pihlaja, K., 'Characterization of lake-aquatic humic matter isolated with two different sorbing solid techniques: pyrolysis electron impact mass spectrometry,' Anal. Chim. Acta., 391, 331-344(1999) https://doi.org/10.1016/S0003-2670(99)00249-4
  16. Thurman, E. M. and Malcolm, R. L., 'Preparative isolation of aquatic humic substances,' Environ. Sci. Technol, 15, 463-466(1981) https://doi.org/10.1021/es00086a012
  17. Thurman, E. M., Organic Geochemical of Natural Waters, Kluwer Academic, Boston, MA, USA, pp. 497-498 (1985)
  18. Steelink, C, 'Implication of elemental characteristics of humic substances,' Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization, Aiken, G.R., McKnight, D.M., Wershaw, R.L. and MacCarthy, P.(Eds.), Wiley-Interscience, New York, pp. 181-209(1985)
  19. Christensen, J. B., Jensen, D. L., Gron, C, Filip, Z. and Christensen, T. H., 'Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater,' Water Res., 32, 125-135(1998) https://doi.org/10.1016/S0043-1354(97)00202-9
  20. Lin, C. F., Liu, S. H., and Hao, O. J., 'Effect of functional groups of humic substances on UF performance,' Water Res., 35(10), 2395-2402(2001) https://doi.org/10.1016/S0043-1354(00)00525-X
  21. Wilson, M. A., 'Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,' J. Soil Sci., 32, 167-186(1981) https://doi.org/10.1111/j.1365-2389.1981.tb01698.x
  22. Ma, H., Allen, H. E., and Yin, Y., 'Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent,' Water Res., 35(4), 985-996(2001) https://doi.org/10.1016/S0043-1354(00)00350-X