Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application

고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가

  • Ahn, Young-Ho (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Speece, R.E. (Department of Civil and Environmental Engineering, Vanderbilt University)
  • 안영호 (영남대학교 건설환경공학부) ;
  • Published : 2005.01.31

Abstract

The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

도시하수 1차슬러지의 가수분해와 산발효특성 향상을 위해 슬러지상 형태를 가진 새로운 회분식 및 반연속시 발효시스템의 운전특성을 운전 온도와 pH를 함수로 평가하였다. 본 공정에서 적용한 산세정 슬러리 반응조는 pH 9와 고온($55^{\circ}C$)의 운전조건하에서 비교적 짧은 체류시간내 유출수내 다량의 유기산을 생산하는 우수한 운전특성을 가지고 있다. 가수분해 특성은 대상기질인 슬러지의 특성에 미치는 계절적 특성에 상당한 영향을 받았으나, 반면에 산형성특성은 거의 영향을 받지 않았다. 우기계절을 기준으로 할 때 최적 운전조건하에서의 휘발성 유기산의 생성과 회수율은 $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$과 63.3%이었으며, 발효부산물로써 질소와 인의 용출율은 각각 $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ 및 0.003 g $P\;g^{-1}\;VSS_{COD}$이었다. 실규모 처리장($Q=158,880\;$m^3\;day^{-1}$)에서의 물질수지 결과 우기계절동안의 휘발성 유기산과 비휘발성 유기산의 생산량은 약 $3,110\;kg\;VFA_{COD}\;day^{-1}$$1,800\;kg\;COD\;day^{-1}$이었는데, 이는 유입 하수기준으로 약 $31\;mg\;COD\;L^{-1}$, $20\;mg\;VFA_{COD}\;L^{-1}$, $0.7\;mg\;N\;L^{-1}$$0.3\;mg\;P\;L^{-1}$의 수질향상을 가져올 것으로 평가되었다. 이 공정의 적용에 따라 유입하수 $1,000\;m^3$ 당 약 $67 (에너지 비용 제외시)의 경제적 이득이 있으며, 건기계절시에는 이보다 더 높은 경제성을 가질 것으로 기대된다. 또한 본 연구결과 고성능 발효조는 병원성균이 없는 안정화된 고형물 생산, 우수한 고형물 분리특성 및 경제성 등 다양한 장점이 있는 것으로 나타났다.

Keywords

References

  1. Banister, S. S. and Pretorius, W. A., 'Optimization of primary sludge acidogenic fermentation for biological nutrient removal,' Water SA, 24(1), 35-41(1998a)
  2. Barnard, J. L., 'Design of Prefermentation Processes, In Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal', Randall, C. W., Barnard, J. L., Stensel, H. D., (Eds), Water Quality Management Library, 5, 85(1992)
  3. Wentzel, M. C., Ekama, G. A., Dold, P. L., Loewenthal, R. E., and Marais, G.v.R., ''Biological excess phosphorus removal in activated sludge systems,' Research Report W59, Dept. of Civil Engineering, University of Cape Town, Rondebosch 7700, South Africa(1988)
  4. Lilley, I. D., Wentzel, M. C, Loewenthal, R. E., and Marais, G.v.R., 'Acid fermentation of primary sludge at $20^{\circ}C$,' Research Report W64, Dept. of Civil Engineering, University of Cape Town, Rondebosch 7700, South Africa(1988)
  5. Randall, C. W., Personal communication(2003)
  6. Pitman, A. R., 'Management of biological nutrient removal plant sludges-change the paradigms?,' Water Res., 33(5), 1141-1146(1999) https://doi.org/10.1016/S0043-1354(98)00316-9
  7. Moser-Engeler, R., Kuhni, M., Bernhard, C., and Siegrist, H., 'Fermentation of raw sludge on an industrial scale and applications for elutriating its dissolved products and non-sedimentable solids,' Water Res., 33(16), 3503 -3511(1999) https://doi.org/10.1016/S0043-1354(99)00068-8
  8. Pitman, A. R., Lotter, L. H., Alexander, W. V., and Deacon, S. L., 'Fermentation of raw sludge and elutriation of resultant fatty acids to promote excess biological phosphorus removal,' Water Sci. Technol., 25(4-5), 185-194(1992)
  9. Rittmann, B. E. and McCarty, P. L., 'Environmental Biotechnology-Principles and Applications,' McGraw-Hill (2001)
  10. Kim, M. I., Ahn, Y. H., Gomec, C. Y., and Speece, R. E., 'Anaerobic digestion elutriated phased treatment (ADEPT): the role of pH and nutrient,' Proc. of 9th World Congress on Anaerobic Digestion 2001, Antwerp, Belgium, 2-6 Sept., 1, 799-804(2001)
  11. Ahn, Y. H., Bae, J., Park, S., and Min, K., 'Anaerobic digestion elutriated phased treatment of piggery waste,' Water Sci. Technol., 49(5-6), 181-189(2004)
  12. Eastman, J. A. and Ferguson, J. F., 'Solubilization of particulate organic carbon during the acid phase of anaerobic digestion,' J. WPCF, 53, 352-366(1981)
  13. Gomec, C. Y., Kim, M., Ahn, Y. H., and Speece, R. E., 'The role of pH in mesophilic anaerobic sludge solubilization,' J. Environ Sci. & Health, A37(10), 1871-1878(2002)
  14. Kim, M., Gomec, C. Y., Ahn, Y. H., and Speece, R. E., 'Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion,' Environ. Technol, 24(9), 1183-1190(2003) https://doi.org/10.1080/09593330309385659
  15. Van Lier, J. B., Tilche, A., Ahring, B. K., Macarie, H., Miletta, R., Dohanyos, M., Hulshoff Pol, L. W., Lens, P., and Verstraete, W., 'New perspectives in anaerobic digestion,' Water Sci. Technol, 43(1), 1-18(2001)
  16. Dinopoulou, G., Rudd, T., and Lester, J. N., 'Anaerobic acidogenesis of complex wastewater: I. The influence of operational parameters on reactor performance,' Biotech. Bioeng., 31, 958-968(1988) https://doi.org/10.1002/bit.260310908
  17. Buhr, H. O. and Andrews, J. F., Review paper, 'The thermophilic anaerobic digestion process,' Water Res., 11, 129-143(1977) https://doi.org/10.1016/0043-1354(77)90118-X
  18. Rimkus, R. R., Ryan, J. M., and Cook, E. J., 'Full-scale thermophilic digestion at the West-Southwest Sewage Treatment Works,' Chicago, Illinois., J. Water Poll. Control Fed., 54, 1447-1457(1982)
  19. Krugel, S., Nemeth, L., and Peddie, C, 'Extended thermophilic anaerobic digestion for producing Class A Bio-solids at the Greater Vancouver Regional District's Anna-cis Island Wastewater Treatment Plant,' Water Sci. Technol, 38(8-9), 409-416(1998) https://doi.org/10.1016/S0273-1223(98)00718-5
  20. US EPA, 'Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge Under 40 CFR Part 503,' EPA/625/R-92/013, Washington, D.C.(1992, 2000)
  21. Schafer, P. L. and Farrell, J. B., Turn up the heat, Water Environ. Technol., 12, 27-32(2000)
  22. Shimp, G. F., Stukenberg, J. R., and Sandino, J., 'The future of solids treatment?,' Water Environ. Technol., 12, 35-39(2000)
  23. Standard Methods for the Examination of Water and Wastewater, 19th Ed. APHA, AWWA and WEF, Washington D.C.(1989)
  24. Buchauer, K., 'A comparison of two simple titration procedures to determine volatile fatty acids in influents to wastewater and sludge treatment processes,' Water SA, 24(1), 49-56(1998)
  25. Korea Institute of Construction Technology, Management of Municipal Wastewater Treatment Plants, KICT 90-EC-111, Korea(1991)
  26. Ann, Y. H and Choi, H G, 'Municipal sludge management and disposal in South Korea: status and a new sustainable approach,' Water Sci. Technol., 50(9), 245-253(2004)
  27. Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., and Vavilin, V.A., 'Anaerobic Digestion Model No.1,' Scientific and Technical Report No.13, IWA publishing, London, UK(2002)
  28. Skalsky, D. S. and Daigger, G. T., 'Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal,' Water Environ. Res., 67(2), 230-237(1995) https://doi.org/10.2175/106143095X131402
  29. Banister, S. S., Pitman, A. R., and Pretorius, W. A., 'The solubilisation of N and P during primary sludge acid fermentation and precipitation of the resultant P,' Water SA, 24(1), 35-41(1998b)
  30. Hatziconstantinou, G. J., Yannakopoulos, P., and Andrea-dakis, A, 'Primary sludge hydrolysis for biological nutrient removal,' Water Sci. Technol., 34, 417-423(1996) https://doi.org/10.1016/0273-1223(96)00545-8