Structural and Chemical Characterization of Aquatic Humic Substances in Advanced Water Treatment Processes

고도정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석

  • Kim, Hyun-Chul (Water Environmental and Remediation Center, Korea Institute of Science and Technology) ;
  • Yu, Myong-Jin (Department of Environmental Engineering, University of Seoul)
  • 김현철 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 유명진 (서울시립대학교 환경공학부)
  • Published : 2005.03.31

Abstract

Humic substances HS) from process waters at advanced water treatment plant consisted of GAC and Ozone/GAC processes were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, spectroscopic characteristics using FT-IR and $^1H$-NMR spectroscopy. Humic fraction gradually decreased from 36.3% to 24.2% from 0.45 to 0.30 mgC/L) through ozonation and carbon adsorption. The humic fraction was isolated into the phenolic and carboxylic groups using A-21 resin, and the concentration of phenolic groups gradually decreased from 38.4% to 23.5% (from 4.9 to $3.2\;{\mu}M/L$ as phenolic-OH) through ozonation and carbon adsorption. In the case of carboxylic groups, the concentration decreased from 61.6% to 43.3% (from 7.8 to $5.8\;{\mu}M/L$ as COOH) through the water treatment processes. On the other hand, concentrations of those roups decreased from 38.4% to 24.0% and 61.6% to 44.9% through carbon adsorption without ozonation, respectively. The structural changes of HS identified from FT-IR and $^1H$-NMR were consistent with the results from the isolation of functional groups in HS.

오존 및 입상활성탄 공정으로 구성된 고도정수처리시설을 대상으로 공정유입수인 모래여과수를 포함하는 각각의 공정수로부터 휴믹물질(HS; humic substances)을 분리 및 추출하여 작용기 분포, 화학적 조성, FT-IR(Fourier transform infrared) 그리고 $^1H$-NMR(proton nuclear magnetic resonance) 스펙트럼을 분석하여 구조 및 화학적 특성을 평가하였다. 오존처리에 이어 입상활성탄 흡착처리를 거치면서 휴믹성분(humic fraction)의 농도분포는 36.3%에서 24.2%로 단계적으로 감소하였으며, 모래여과수가 활성탄 흡착칼럼으로 직접 유입되는 공정의 경우 36.3%에서 25.0%로 감소하는 것으로 나타났다. 전오존처리 이후 활성탄 흡착처리시 HS 중 페놀기(phenolic groups)와 카르복실기(carboxylic groups)의 농도분포는 38.4%에서 23.5%로 그리고 61.6%에서 43.3%로 각각 감소하였으며, 전오존처리하지 않은 경우 38.4%에서 24.0%로 그리고 61.6%에서 44.9%로 각각 감소하였다. 정수처리를 거치면서 HS의 카르복실기에 대한 페놀기의 비율에 따라 HS 분자구조 중 O/C 몰비가 감소하거나 또는 증가하는 결과를 나타내었다.

Keywords

References

  1. Khan, E., Babcock, R. W., Suffet, I. H., and Stenstorm, M. K., 'Biodegradable dissolved organic carbon for indication wastewater reclamation plant performance and treated wastewater quality,' Water Environ. Res., 70, 1033-1040(1998) https://doi.org/10.2175/106143098X123363
  2. Siddiqui, M. S., Amy, G. L., and Murrhy, B. D., 'Ozone enhanced removal of natural organic matter from drinking water source,' Water Res., 31, 3098-3106(1997) https://doi.org/10.1016/S0043-1354(97)00130-9
  3. Oliver, B. G., 'Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors,' Environ. Sci. Technol., 17, 80-83(1983) https://doi.org/10.1021/es00108a003
  4. Peters, R. J. B., de Leer, E. W. B., and de Galan, L., 'Dihaloacetonitriles in Dutch drinking water,' Water Res., 24, 797-800(1990) https://doi.org/10.1016/0043-1354(90)90038-8
  5. Thurman, E. M. and Malcolm, R. L., 'Preparative isolation of aquatic humic substances,' Environ. Sci. Technol., 15, 463-466(1981) https://doi.org/10.1021/es00086a012
  6. Yu, M. J., Kim, Y. H., Han, I., and Kim, H. C., 'Ozonation of Han River humic substances,' Water Sci. Technol., 46(11-12), 21-26(2002)
  7. Frimmel, F. H., 'Characterization of organic acids in freshwater: a current status and limitations,' Organic Acids in Aquatic Ecosystems. Dahlem Konferenzen, Perdue, E. M. and Gjessing, E. T.(Eds.), Wiley, Chrichester, pp. 5-23(1990)
  8. Hautala, K., Peuravuori, J., and Pihlaja, K., 'Measurement of aquatic humus content by spectroscopic analyses,' Water Res., 34(1), 246-258(2000) https://doi.org/10.1016/S0043-1354(99)00137-2
  9. Schnoor, J. L., Nitzschke, J. L., Lucas, R. D., and Veenstra, J. N., 'Trihalomethanes yields as a function of precursor molecular weight,' Environ. Sci. Technol., 13, 1134-1138(1979) https://doi.org/10.1021/es60157a014
  10. Kim, H. C., Yu, M. J., Myung, G. N., Koo, J. Y., and Kim, Y. H., 'Characterization of Natural Organic Matter in Advanced Water Treatment Processes for DBPs Control,' in Proceedings of the IWA Leading-Edge Conference on Water and Wastewater Treatment Technologies, IWA, Prague, Czech Republic, pp. 67-69(2004)
  11. Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., 'Bacterial enzyme activities in ground water during bank filtration of lake water,' Water Res., 30, 2495-2501(1996) https://doi.org/10.1016/0043-1354(96)00177-7
  12. Peuravuori, J. and Pihlaja, K., 'Isolation and characterization of natural organic matter from lake water: comparison of isolation with solid adsorption and tangential membrane filtration,' Environ. Int., 23, 441-451 (1997) https://doi.org/10.1016/S0160-4120(97)00049-4
  13. Amy, G. L., Sierka, R. A., Bedessem, J., Price, D., and Tan, L., 'Molecular size distribution of dissolved organic matter,' J. AWWA, 84(6), 67-75(1992)
  14. Collins, M. R. and Vaughan, C. W., 'Characterization of NOM removal by biofiltration: impact of coagulation, ozonation and sand media coating,' Disinfection By-products in Water Treatment: The Chemistry of Their Formation and Control, Minear, R. A. and Amy, G. L.(Eds.), CRC Press, Boca Raton, FL, pp. 449-476(1996)
  15. Edwards, M. and Benjamin, M. M., 'Transformation of NOM by ozone and its effect on iron and aluminum solubility,' J. AWWA, 84(6), 56-66(1992)
  16. Amy, G. L., Collins, M. R., Kuo, C. J., and King, P. H., 'Comparing gel permeation chromatography and ultrafiltration for the molecular weight characterization of aquatic organic matter,' J. AWWA, 79(1), 43-49 (1987)
  17. Peuravuori, J. and Pihlaja, K., 'Molecular size distribution and spectroscopic properties of aquatic humic substances,' Anal. Chim. Acta., 337, 133 -149(1997) https://doi.org/10.1016/S0003-2670(96)00412-6
  18. Peuravuori, J., Paaso, N., and Pihlaja, K., 'Characterization of lake-aquatic humic matter isolated with two different sorbing solid techniques: pyrolysis electron impact mass spectrometry,' Anal. Chim. Acta., 391, 331-344(1999) https://doi.org/10.1016/S0003-2670(99)00249-4
  19. Thurman, E. M., Organic Geochemical of Natural Waters, Kluwer Academic, Boston, MA, USA, pp. 497-498(1985)
  20. Sontheimer, H., Crittenden, J. C., and Summers, R. S., Activated Carbon for Water Treatment, DVGW-Forschungsstelle, Germany, pp. 88-96(1988)
  21. Lin, C-F., Liu, S-H., and Hao, O.J., 'Effect of functional groups of humic substances on UF performance,' Water Res., 35(10), 2395-2402(2001) https://doi.org/10.1016/S0043-1354(00)00525-X
  22. Wilson, M. A., 'Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,' J. Soil Sci., 32, 167-186(1981) https://doi.org/10.1111/j.1365-2389.1981.tb01698.x
  23. Ma, H., Allen, H. E., and Yin, Y., 'Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent,' Water Res., 35(4), 985-996(2001) https://doi.org/10.1016/S0043-1354(00)00350-X