Inhibitory Effects of Artemisia asiatica on Osteoclast Formation Induced by Periodontopathogens

  • Moon, Sun-Young (Dept of Oral Biology, and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Choi, Bong-Kyu (Dept of Oromaxillofacial Infection and Immunity, and Dental Research Institute, College of Dentistry, Seoul National University) ;
  • Cha, Jeong-Heon (Dept of Oral Biology, and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Min, Chon-Ki (Dept of Oral Biology, and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Son, Mi-Won (Research Laboratories of Dong-A Pharmaceutical Co., Ltd) ;
  • Yoo, Yun-Jung (Dept of Oral Biology, and Oral Science Research Center, College of Dentistry, Yonsei University)
  • Published : 2005.02.28

Abstract

Bone resorption surrounding tooth root causes tooth loss in periodontitis patients. Osteoclast has bone resorption activity. Effects of Artemisia asiatica on bone resorption induced by periodontopathogens, Porphyromonas gingivalis and Treponema denticola, were examined using co-culture systems of mouse osteoblasts and bone marrow cells. Addition of A. asiatica ethanol extract to bacterial sonicate abolished bacteria-induced osteoclastogenesis. To determine inhibitory mechanism of A. asiatica against osteoclastogenesis, effects of A. asiatica on expressions of osteoclastogenesis-inducing factors such as receptor activator of NF-${\kappa}B$ ligand (RANKL), prostaglandin $E_2\;(PGE_2)$, interleukin (IL)-1, and tumor necrosis factor (TNF)-${\alpha}$, in osteoblasts were examined. A. asiatica suppressed expressions of RANKL, $PGE_2$, IL-$1{\beta}$, and TNF-${\alpha}$ increased by each bacterial sonicate. These results suggest inhibitory action of A. asiatica against osteoclastogenesis is associated with down-regulations of RANKL, $PGE_2$ IL-$1{\beta}$, and TNF-${\alpha}$ expressions.

Keywords

References

  1. Biochem. Biophys. Res. Commun. v.256 A new member of tumor necrosis factor ligand family, ODF/OPGUIRANCE/RANKL, regulates osteoclast differentiation and function Takahashi, N.;Udagawa, N.;Suda, T. https://doi.org/10.1006/bbrc.1999.0252
  2. J. Bone Miner. Res. v.15 The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption Hofbauer, L.C.;Khosla, S.;Dunstan, C.R.;Lacey, D.L.;Boyle, W.J.;Riggs, B.L. https://doi.org/10.1359/jbmr.2000.15.1.2
  3. Proc. Natl. Acad. Sci. USA v.96 Tumor necrosis factor receptor farnily member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand Hsu, H.;Lacey, D.L.;Dunstan, C.R.;Solovyev, I.;Colombero, A.;Timms, E.;Tan, H.L.;Elliott, G.;Kelley, M.J.;Sarosi, I.;Wang, L.;Xia, X.Z.;Elliott, R.;Chiu, L.;Black, T.;Scully, S.;Capparelli, C.;Morony, S.;Shimamoto, G.;Bass, M.E.;Boyle, W.J.
  4. Proc. Natl. Acad. Sci. USA v.95 Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCEJRANKL Yasuda, H.;Shima, N.;Nakagawa, N.;Yamaguchi, K.;Kinosaki, M.;Mochizuki, S.;Tomoyasu, A.;Yano, K.;Goto, M.;Murakami, A.;Tsuda, E.;Morinaga, T.;Higashio, K.;Udagawa, N.;Takahashi, N.;Suda, T.
  5. Biochem. Biophys. Res. Commun. v.246 Osteoclast differentiation factor mediates an essential signal for bone resorption induced by la, 25-dihydroxyvitamin D3, prostaglandin Ez, or parathyroid hormone in the microenviro-ment of bone Tsukii, K.;Shima, N.;Mochizuki, S.;Yamaguchi, K.;Kinosaki, M.;Yano, K.;Shibata, 0.;Udagawa, N.;Yasuda, H.;Suda, T.;Higashio, K. https://doi.org/10.1006/bbrc.1998.8610
  6. Bone v.25 $Interleukin-l{\beta}$ and Tumor necrosis $factor-{\alpha}$, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells Hofbauer, L.C.;Lacey, D.L.;Dunstan, C.R.;Spelsberg, T.C.;Riggs, B.L.;Khosla, S. https://doi.org/10.1016/S8756-3282(99)00162-3
  7. Cytokine Growth Factor Rev. v.14 Biology of the TRANCE axis Walsh, M.C.;Choi, Y. https://doi.org/10.1016/S1359-6101(03)00027-3
  8. Periodontol 2000 v.14 Mechanisms of alveolar bone destruction in periodontitis Schwartz, Z.;Goultschin, J.;Dean, D.D.;Boyan, B.D. https://doi.org/10.1111/j.1600-0757.1997.tb00196.x
  9. J. Periodontal. Res. v.30 Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods Kigure, T.;Saito, A.;Seida, K.;Yamada, S.;Ishihara, K.;Okuda, K. https://doi.org/10.1111/j.1600-0765.1995.tb01284.x
  10. Periodontol. 2000 v.20 Virulence factors of Porphyromonas gingivalis Holt, S.C.;Kesavalu, L.;Walker, S.;Genco, C.A. https://doi.org/10.1111/j.1600-0757.1999.tb00162.x
  11. Crit. Rev. Oral BioI. Med. v.12 Role of Treponema denticola in periodontal disease Sela, M.N. https://doi.org/10.1177/10454411010120050301
  12. Infect. Immun. v.70 Bacteria induce osteoclastogenesis via an osteoblast-independent pathway Jiang, Y.;Mehta, C.K.;Hsu, T.Y.(et al.) https://doi.org/10.1128/IAI.70.6.3143-3148.2002
  13. Infect. Immun. v.71 Induction of osteoclastogenesis and matrix metalloproteinase expression by the lipooligosaccharide of Treponema denticola Choi, B.K.;Lee, H.J.;Kang, J.R.;Jeong, G.J.;Min, C.K.;Yoo, Y.J. https://doi.org/10.1128/IAI.71.1.226-233.2003
  14. Infect. Immun. v.66 Bone resorption caused by three periodontal pathogens in vivo in mice is mediated in part by prostaglandin Zubery, Y.;Dunstan, C.R.;Story, B.M.;Kesavalu, L.;Ebersole, J.L.;Holt, S.C.;Boyce, B.E.
  15. Infect. Immun. v.67 Interleukin-l and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide Chiang, C.Y.;Kyritsis, G.;Graves, D.T.;Amar, S.
  16. Arch. Pharm. Res. v.21 Studies on protective effect of DA-9601, Artemisia asiatica extract, on acetaminophen- and CC14-induced liver damage in rats Ryu, B.K.;Ahn, B.O.;Oh, T.Y.;Kim, S.H.;Kim, W.E.;Lee, E.B. https://doi.org/10.1007/BF02975366
  17. Taehan. Kan. Hakhoe. Chi. v.8 Suppressive effects of antioxidant DA-9601 on hepatic fibrosis in rats Cheong, J.Y.;Oh, T.Y.;Lee, K.M.(et al.)
  18. Amyloid v.8 Protective effect of 4', 5' dihydroxy-3', 6, 7-trimethoxyflavone from Artemisia asiatica against $A{\beta}-induced$ oxidative stress in PC12 cells Heo, H.J.;Cho, H.Y.;Hong, B.;Kim, H.K.;Kim, E.K.;Kim, B.G.;Shin, D.H. https://doi.org/10.3109/13506120109007362
  19. Phytother. Res. v.16 Antimicrobial properties of the essential oil of Artemisia asiatica Nakai Kalemba, D.;Kusewicz, D.;Swiader, K. https://doi.org/10.1002/ptr.856
  20. Int. J. Cancer v.100 Inhibitory effects of the standardized extract (DA9601) of Artemisia asiatica Nakai on phorbol ester-induced ornithine decarboxylase activity, papilloma formation, cyclooxy-genase-2 expression, inducible nitric oxide synthetase expression and nuclear transcription factor K8 activation in mouse skin Seo, H.J.;Park, K.K.;Han, S.S.;Chung, W.Y.;Son, M.W.;Kim, W.E.;Surh, Y.J. https://doi.org/10.1002/ijc.10489
  21. Int. J. Syst. Bacteriol. v.46 Treponema maltophilum sp. nov., a small oral spirochete isolated from human periodontal lesions Wyss, C.;Choi, B.K.;Schiipbach, P.;Guggenheim, B.;Gobel, D.B. https://doi.org/10.1099/00207713-46-3-745
  22. J. Periodontol v.72 Effects of whole cell sonicates of Treponema lecithinolyticum on osteoclast differentiation Choi, B.K.;Ohk, S.H.;Lee, H.J.;Kang, J.R.;Jeong, G.J.;Yoo, Y.J. https://doi.org/10.1902/jop.2000.72.9.1172
  23. Endocrinology v.123 Osteoblastic cells are involved in osteoclast formation Takahashi, N.;Akatsu, T.;Udagawa, N.;Sasaki, T.;Yamaguchi, A.;Moseley, J.M.;Martin, T.J.;Suda, T. https://doi.org/10.1210/endo-123-5-2600
  24. Methods Enzymol. v.282 Role of $1{\alpha}$, 25dihydroxyvitamin $D_3$ in osteoclast differentiation and function Suda, T.;Jimi, E.;Nakamura, I.;Takahashi, N. https://doi.org/10.1016/S0076-6879(97)82110-6