Isolation and Structural Determination of Aldose Reductase Inhibitor from Korean Fermented Soybean Paste

  • Choi, Sung-Won (Green Biotech Co. Ltd.) ;
  • Yang, Jae-Sung (Green Biotech Co. Ltd.) ;
  • Jung, Eun-A (Department of Biotechnology, Yonsei University) ;
  • Choi, Hak-Jong (Department of Biotechnology, Yonsei University) ;
  • Lee, Han-Seung (Department of Biotechnology, Yonsei University) ;
  • Shin, Chul-Soo (Department of Biotechnology, Yonsei University) ;
  • Kim, Dong-Seob (Department of Food and Culinary Art, Osan College) ;
  • Hur, Nam-Yun (Department of Food Science, Milyang National University) ;
  • Baik, Moo-Yeol (Institute of Life Science and Resources, Department of Food Science and Biotechnology, Kyung Hee University)
  • 발행 : 2005.06.30

초록

Aldose reductase catalyzes the conversion of glucose into sorbitol. Inhibiting this enzyme in diabetes mellitus can delay or prevent pathogenic process. Aldose reductase inhibitor was screened from Korean fermented soybean pastes (Doen-jang) and purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. Aldose reductase inhibitor was identified as genistein with molecular weight of 270 Da and molecular formula of $C_{15}H_{10}O_5$ based on UV spectrometry, $^1H$ and $^{13}C\;NMRs$, and mass spectrometry. Genistein inhibited aldose reductase of pig lens with $IC_{50}$ level of $20\;{\mu}M$. Because genistein was effective against aldose reductase of animal source, it may be a potential therapeutic agent for diabetic complications.

키워드

참고문헌

  1. Clin. Chem. v.32 Overview of the complications of diabetes Santiago, J.V.
  2. Diabetes Care v.1 Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973 Pirart, J.
  3. Ann. Int. Med. v.118 Tolrestat for mild diabetic neuropathy Dario, G.;Teresa, S. https://doi.org/10.7326/0003-4819-118-1-199301010-00002
  4. Diabetes v.42 Hyperglycemic pseudohypoxia and diabetic complications Joseph, R.W.;Katherine, C.;Myrto, F. https://doi.org/10.2337/diabetes.42.6.801
  5. Handbook of Diabetes Williams, G.;John, P.
  6. Biochem. Pharmacol. v.40 Inhibition of aldehyde reductase by aldose reductase inhibitors Sanai, S.;Peter, F.K. https://doi.org/10.1016/0006-2952(90)90490-C
  7. Hyperglycemia v.12 Polyol metabolism and complications of diabetes mellitus Gabby, K.H.
  8. Diabetes v.34 Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor Annette, B.M.;Cruz, E. https://doi.org/10.2337/diabetes.34.1.15
  9. Ann. Int. Med. v.101 Aldose reductase and complications of diabetes David, G.C.;Kinoshita, J.H.;Peter, F.K. https://doi.org/10.7326/0003-4819-101-1-82
  10. Diabetes Metab. Rev. v.4 The involvement of aldose reductase in diabetic complications Kinoshita, J.H.;Nishimura, C. https://doi.org/10.1002/dmr.5610040403
  11. Biochem. J. v.250 Hyperglycemia, polyol metabolism and complications of diabetes mellitus Mistry, K.P.;Annette, B.M.;Diecke, F.P.
  12. Diabetes v.42 Mechanisms for D-glucose inhibition of myo-inositol influx into rat lens Kishor, P.M.;Annette, B.M.;Friedrich, P.J. https://doi.org/10.2337/diabetes.42.12.1737
  13. Eur. J. Pharmcol. v.237 Effects of treatment with myo-inositol or its 1,2, 6-triphosphate(PP56) on nerve conduction in streptozotocin-diabetes Anne, L.C.;Nigel, A.C.;Claudia, B.E. https://doi.org/10.1016/0014-2999(93)90277-O
  14. J. Med. Chem. v.28 Aldose reductase inhibitors: A potential new class of agents for the pharmacological control of certain diabetic complications Kador, P.F.;Kinoshita, J.H.;Sharpless, N.E. https://doi.org/10.1021/jm00145a001
  15. Tip. v.15 Aldose reductase inhibitors and their potential for the treatment of diabetic complications David, R.T.;Elizabeth, J.S.;Lara, T.D.
  16. Biochem. Pharmcol. v.39 Ponalrestat: A potent and specific inhibitor of aldose reductase Walter, H.J.;Ward, C.M.;Sennitt, H.R. https://doi.org/10.1016/0006-2952(90)90033-H
  17. Biochemistry v.28 Kinetic and structural effects of activation of bovine kidney aldose reductase Grimshaw, C.E.;Shahbaz, M.;Jahangiri, G. https://doi.org/10.1021/bi00439a006
  18. Chem. Pharm. Bull. v.43 Search for naturally occuring substances to prevent the complications of diabetes Yoshihito, O.;Noriaki, M.;Katsuhisa, S. https://doi.org/10.1248/cpb.43.1385
  19. J. Antibiot. v.42 WF-2421, an aldose reductase inhibitor produced from a fungus, Humicola grisea Motoaki, N.;Yasuhisa, T.
  20. Biochem. J. v.219 Bovine lens aldose reductase Anjana, B.H.;James, M.C.
  21. Food Sci. Biotechnol. v.14 no.1 Purification and identification of squalene synthase inhibitor isolated from fermented soybean paste Choi, S.W.;Kim, D.S.;Park, C.S.;Baik, M.Y.
  22. Food Chem. Toxicol. v.26 Reduction of benzo(a)pyren-induced mouse forestomach neoplasms in mice given nitrite and dietray soy sauce Benjamin, H.;Storkson, J.;Tallas, P.G.;Pariza, M.W. https://doi.org/10.1016/0278-6915(88)90066-X
  23. Cancer Res. v.51 Inhibition of benzo(a)pyren-induced mouse forestomach neoplasia by dietry soy sauce Benjamin, H.;Storkson, J.;Nagahara, A.;Pariza, M.W.
  24. J. Korean Soc. Food Sci. Nutr. v.22 Antioxidative and antimutagenic characteristics of melanoidin related products Cheigh, H.S.;Lee, C.Y.
  25. J. Korean Soc. Food Sci. Nutr. v.22 Antioxidant characteristics of melanidin related products fractionated from fermented soybean sauce Cheigh, H.S.;Lee, J.S.;Moon, G.S.;Park, K.Y.
  26. Cancer Res v.41 Effects of protease inhibitors on radiation transformation in vitro Kennedy, A.R.;Little, J.B.
  27. Cancer Res. v.43 Bowman-Birk soybean protease inhibitor as an anti carcinogen Yavelow, J.;Finalay, T.H.;Kennedy, A.R.;Troll, W.
  28. Cancer Res. v.50 Supression of dimethylhydrazine-induced carcinogenesis in mice by dietry addition of Bowman-Birk protease inhibitor Clair, W.H.;Billing, P.C.;Carew, J.A.;McGandy, C.K.;Newberne, P.;Kennedy, A.R.
  29. Carcinogenesis v.10 Inositol and inositol hexaphosphate supree cell proliferation and tumor formation in CD-1 mice Shamsuddin, A.M.;Ullah, A.;Chakravarthy, A.K. https://doi.org/10.1093/carcin/10.8.1461
  30. Carcinogenesis v.9 Supression of large intesinal cancer in F344 rats by inositol hexaphosphate Shamsuddin, A.M.;Elsayed, A.M.;Ullah, A. https://doi.org/10.1093/carcin/9.4.577
  31. J. Agric. Food Chem. v.41 Genistein, daidzein, and their ${\beta}$-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets Coward, L.;Barnes, N.C.;Stechell, K.D.R.;Barnes, S. https://doi.org/10.1021/jf00035a027
  32. Biochim. Biophys. Res. Commun. v.179 Genistein inhibition of the human breast cancer cells: Independence from estrogen receptors and the multi-drug resistance gene Peterson, G.;Barnes, S. https://doi.org/10.1016/0006-291X(91)91423-A
  33. Invest. Ophthalmol. v.73 Mechanism initiating cataract formation Kinoshita, J.H.
  34. Chem. Pharm. Bull. v.43 Five new C-methyl flavonoids the potent aldose reductase inhibitors from Matteuccia orientalis TREV Purusotam, B.;Shigetoshi, K.;Koji, H. https://doi.org/10.1248/cpb.43.1558
  35. Phytochem v.23 Inhibition of lens aldose reductase by flavonoids Shimizu, M.;Ito, T.;Terashima, S.;Hayashi, T.;Arisawa, M.;Morita, N.;Kurokawa, S.;Ito, K.;Hashimoto, Y. https://doi.org/10.1016/S0031-9422(00)84935-3
  36. Isoflavones: Source and metabolism;Handbook of Nutraceuticals and Functional Foods Hendrich, S.;Murphy, P.A.;Wildman, R.E.C.(ed.)