Antioxidant Property of Genistein: Inhibitory Effect on HOCI Induced Protein Degradation, DNA Cleavage, and Cell Death

  • Choi, Je-Min (Department of Biotechnology, College of Engineering, Yonsei University) ;
  • Ryu, Hyun-Jin (Department of Radiation Oncology, Asan Medical Center) ;
  • Chung, Jae-Hwan (Social Research and Data Analysis, World Research Corporation) ;
  • Park, Jae-Chul (Department of Biotechnology, College of Engineering, Yonsei University) ;
  • Hwang, Jae-Kwan (Department of Biotechnology, College of Engineering, Yonsei University) ;
  • Shin, Dong-Bum (Department of Food science and Nutrition, Cheju National University) ;
  • Lee, Sang-Kyou (Department of Biotechnology, College of Engineering, Yonsei University) ;
  • Ryang, Ryung (Department of Biotechnology, College of Engineering, Yonsei University)
  • Published : 2005.06.30

Abstract

The aim of this study was to investigate the in vitro antioxidant profiles of genistein and other isoflavonoids. The reactivity of genistein towards stable radical and reactive oxygen species including ${\bullet}\;ABTS^+$, ${\bullet}{O_2}^-$, $H_2O_2$ and HOCl has been investigated, and the effects were compared with other isoflavonoids and antioxidants. All the tested isoflavonoids showed remarkable ${\bullet}\;ABTS^+$ scavenging activity and genistein was more potent than BHT and ascorbic acid. Genistein was more effective in scavenging hypochlorous acid than superoxide and hydrogen peroxide. At $10\;{\mu}M$ concentrations of genistein and genistin showed about 90% inhibitory effect on HOCl, while BHT and ascorbic acid showed lower than 50% inhibitory effect. Moreover, genistein could inhibit plasmid DNA cleavage, protein degradation and cell death from HOCl attack, while daidzein, BHT and ascorbic acid could not protect them effectively. These results suggest that genistein is a more potent radical scavenger than other isoflavonoids, and it can remarkably reduce cellular damage induced by HOCl.

Keywords

References

  1. J. Nutr. Biochem. v.11 Daidzein and genistein content of fruits and nuts Liggins, J.;Bluck, L.J.;Runswick, S.;Atkinson, C.;Coward, W.A.;Bingham, S.A. https://doi.org/10.1016/S0955-2863(00)00085-1
  2. Food Sci. Biotechnol. v.5 Isoflavone contents in some varieties of soybean Choi, J.S.;Kwon, T.W.;Kim, J.S.
  3. Biosci. Biotechnol. Biochem. v.66 Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation Lai, H.H.;Yen, G.C. https://doi.org/10.1271/bbb.66.22
  4. Cancer Invest v.21 Soy isoflavones and cancer prevention Sarkar, F.H.;Li, Y. https://doi.org/10.1081/CNV-120023773
  5. J. Cell Biochem. v.82 Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines Xu, J.;Loo, G. https://doi.org/10.1002/jcb.1147
  6. J. Cardiovasc. Pharmacol. v.36 Effect of genistein on cardiovascular responses to angiotensin n in conscious unrestrained rats Pesce, N.;Eyster, K.M.;Williams, J.L.;Wixon, R.;Wang, C.;Martin, D.S. https://doi.org/10.1097/00005344-200012000-00018
  7. Osteoporos. Int. v.14 Isoflavones and skeletal health: are these molecules ready for clinical application? Migliaccio, S.;Anderson, J.J. https://doi.org/10.1007/s00198-002-1372-1
  8. J. Nutri. Biochem. v.6 The antioxidant activity of genistein in vitro Record, I.R.;Dreosti, I.E.;McInerney, J.K. https://doi.org/10.1016/0955-2863(95)00076-C
  9. Free Radi. Biol. Med. v.35 Radical scavenging properties of genistein Zielonka, J.;Gbicki, J.;Grynkiewicz, G. https://doi.org/10.1016/S0891-5849(03)00472-6
  10. Toxicology v.179 ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids Qiong, G.;Gerald, R.;Hadi, M.;Stefan, W.;Lester, P. https://doi.org/10.1016/S0300-483X(02)00241-X
  11. Free Radicals in Biology and Medicine Halliwel, B.;Gutteridge, J.M.C.
  12. Free Radi. Biol. Med. v.29 Mitochondrial free radical generation, oxidative stress and aging Enrique, C.;Kelvin, J.A.D. https://doi.org/10.1016/S0891-5849(00)00317-8
  13. Free Radi. Biol. Med. v.26 Antioxidant activity applying an improved ABTS radical cation declorization assay Roberta, R.;Nicoletta, P.;Anna, P.;Min, Y.;Catherine, R.E. https://doi.org/10.1016/S0891-5849(98)00315-3
  14. Biochem. Biophysic. Res. Communi. v.46 The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen Nishikimi, M. https://doi.org/10.1016/S0006-291X(72)80218-3
  15. Biochem. J. v.256 The antioxidant action of taurine, hypotaurine, and therimetabolic precursors Aruoma, O.I.
  16. Pharm. World Sci. v.17 Scavenging of reactive oxygen species bylectosteine, a molecule with two blocked-SH groups Gressier, B.;Lebegue, N. https://doi.org/10.1007/BF01875435
  17. Euro. J. Pharmacol. v.383 The inhibitory effect of ambroxol on hypochlorous acid-induced tissue damage and respiratory burst of phagocytic cells Yong, C.;Yoon, Y.J. https://doi.org/10.1016/S0014-2999(99)00585-3
  18. Mut. Res. v.513 Different effects of genistein and resveratrol on oxidative DNA damage in vitro William, W.;Zhouxiao, C.;Xingxiang, P.;Michael, A.T.;Yunbo, L. https://doi.org/10.1016/S1383-5718(01)00303-5
  19. Proc. Nat. Acad. Sci. USA. v.28 Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals Chilakamarti, V.R.;Istvan, B.;Tadahide, I.;Sankar, M.
  20. Free Radi. Biol. Med. v.26 Antioxidant activity applying an improved ABTS radical cation decolorization assay Roberta, R.;Nicoletta, P.;Anna, P.;Ananth, P.;Min, Y.;Catherine, R.E. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Free Radi. Biol. Med. v.20 Structure-antioxidant activity relationships of flavonoids and phenolic acids Catherine, A.R.;Nicholas, J.M.;George, P. https://doi.org/10.1016/0891-5849(95)02227-9
  22. Exp. Cell Res. v.291 Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation Lee, Y.J.;Cho, H.N.;Soh, J.W.;Jhon, G.J.;Cho, C.K.;Chung, H.Y.;Bae, S.;Lee, S.J.;Lee, Y.S. https://doi.org/10.1016/S0014-4827(03)00391-4
  23. Apotosis v.4 Cellular resistance to vincristine suppresses NF-kappa B activation and apoptosis but enhances c-Jun-NH2-terminal protein kinase activation by tumor necrosis Giri, D.K.;Pantazis, P.;Aggarwal, B.B. https://doi.org/10.1023/A:1026413111733
  24. J. Biol. Chem. v.278 Hydrogen peroxide signaling through tumor necrosis factor receptor I leads to selective activation of c-Jun N-terminal kinase Pantano, C.;Shrivastava, P.;McElhinney, B.;Janssen, H.Y. https://doi.org/10.1074/jbc.M308487200
  25. Arch. Biochem. Biophys. v.323 Kinetics and mechanisms of HOCl reactions Folkes, L.K. https://doi.org/10.1006/abbi.1995.0017
  26. Toxicol. Lett. v.15 Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells Virgilio, A.L.;Iwani, K.;Watjen, W.;Kahl, R.;Degen, G.H.
  27. Life Sci. v.11 Evidence for genistein mediated cytotoxicity and apoptosis in rat brain Choi, E.J.;Lee, B.H. https://doi.org/10.1016/0024-3205(72)90284-6
  28. Toxicology v.15 The selective effect of genistein on the toxicity of bleomycin in normal lymphocytes and HL-60 cells Lee, R.;Kim, Y.J.;Lee, Y.J.;Chung, H.W.
  29. Free Radi. Biol. Med. v.35 Neutrophil myeloperoxidase chlorinates and nitrates soy isoflavones and enhances their antioxidant properties Brenda, J.B.;Tracy, D.A.;Matthew, R.B.;Marion, K.;Landon, S.W.;Jeevan, P.;Nigel, P.B.;Stephen, B.;Victor, M.D.;Rakesh, P.P. https://doi.org/10.1016/j.freeradbiomed.2003.08.009
  30. Arch. Biochem. Biophys. v.368 Chlorination and nitration of soy isoflavones Boersma, B.J.;Patel, R.P.;Kirk, M.;Jackson, P.L. https://doi.org/10.1006/abbi.1999.1330
  31. Biochemistry (Mosc) v.65 Hypochlorous acid-induced lysis of human erythrocytes. Inhibition of cellular damage by the isoflavonoid genistein-8-C-glucoside Zavodnik, L.B.;Zavodnik, I.B.;Lapshina, E.A.;Shkodich, A.P.;Bryszewska, M.;Buko, V.U.
  32. J. Asthm. v.41 Dietary intake of soy genistein is associated with lung function in patients with asthma Smith, L.J.;Holbrook, J.T.;Wise, R.;Blumenthal, M.;Dozor, A.J.;Mastronarde, J.;Williams, L. https://doi.org/10.1081/JAS-200038447