Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge

음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석

  • Kim, Dong-Kun (Water Environment & Remediation Research Center, Korea Institute Science and Technology) ;
  • Lee, Yun-Jie (Water Environment & Remediation Research Center, Korea Institute Science and Technology) ;
  • Kim, Dong-Im (Water Environment & Remediation Research Center, Korea Institute Science and Technology) ;
  • Kim, Ji-Seong (Water Environment & Remediation Research Center, Korea Institute Science and Technology) ;
  • Yu, Myong-Jin (Department of Environmental Engineering, University of Seoul) ;
  • Pak, Dae-Won (The Graduate School of Energy & Environment, Seoul National University of Technology) ;
  • Kim, Mi-Sun (Biomass Research Center, Korea Institute of Energy Research) ;
  • Sang, Byoung-In (Water Environment & Remediation Research Center, Korea Institute Science and Technology)
  • 김동건 (한국과학기술원 수질환경 및 복원연구센터) ;
  • 이윤지 (한국과학기술원 수질환경 및 복원연구센터) ;
  • 김동임 (한국과학기술원 수질환경 및 복원연구센터) ;
  • 김지성 (한국과학기술원 수질환경 및 복원연구센터) ;
  • 유명진 (서울시립대학교 환경공학과) ;
  • 박대원 (서울시립대학교 에너지환경대학원) ;
  • 김미선 (한국에너지기술연구원 바이오매스연구센터) ;
  • 상병인 (한국과학기술원 수질환경 및 복원연구센터)
  • Published : 2005.12.30

Abstract

Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

1. 회분식 실험결과 유기물의 함량이 높은 음식물만을 기질로 이용한 경우보다 폐활성 슬러지의 혼합비율이 $10{\sim}20%$일 때 더 높은 수소생산을 나타내었다. 또한 폐활성 슬러지의 혼합비율이 40%인 경우에는 메탄이 발생하여 생성된 수소가 소모되는 반응을 나타내었다. 2. 연속 실험의 경우 HRT를 줄여 유기물의 부하를 증가시킬 경우 수소생산량이 급격히 증가하였으며, HRT 2일까지는 미생물의 wash out 없이 안정적 수소생산을 보였다. 3. 음식물과 폐활성 슬러지를 이용한 연속 운전을 HRT와 두 기질의 비율을 달리하여 운전한 결과 2일의 HRT와 FW:WAS=80:20의 비율에서 140 mL $H_2/g$ VSS의 높은 수소생산율을 얻을 수 있었다. 4. 음식물 쓰레기와 폐활성 슬러지의 비율을 적절히 혼합할 경우, 수소생산의 상승작용을 할 수 있는 가능성을 확인하였다. 5. SEM과 FISH 분석을 통하여 반응조 내의 수소 미생물의 공간적 분포 및 형태를 관측하였으며, 음식물이나 슬러지 주변에 많은 수소생산 미생물이 관측되었다.

Keywords

References

  1. Scott, D. S. (2004), Hydrogen-the case for inevitability, Int. J. Hydrogen energy 29, 225-227 https://doi.org/10.1016/S0360-3199(03)00126-5
  2. Lay, J. J., Lee, Y. J., and T. Noike (1999), Feasibility of biological hydrogen production from organic fraction of municipal solids waste, Wat. Res. 33, 2579-2586 https://doi.org/10.1016/S0043-1354(98)00483-7
  3. Das, D. and T. N. Veziroglu (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  4. Dunn, S. (2002), Perspectives towards a hydrogen future, Cogeneration and on site power production 3, 55-60
  5. Kim, S. H., Han, S. K, and H. S. Shin (2004), Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge, Int. J. Hydrogen Energy 29, 1607-1616 https://doi.org/10.1016/j.ijhydene.2004.02.018
  6. Mizuno, O., Dinsdale, R, Hawkes, F. R., Hawkes, D. L., and T. Noike (2000), Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource. Technol. 73, 59-65 https://doi.org/10.1016/S0960-8524(99)00130-3
  7. Hawkes, F, Dinsdale, R, Hawkes, D., and I. Hussy (2002), Sustainable fermentative hydrogen production :challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
  8. Lay, J. J. (2000), Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, Biotechnol. Bioeng. 68, 269-278 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  9. APHA, AWWA, and WPCF (1998), Standard Methods for the Exanmination of Water and Wastewater, 20th. ed., APHA, Washington, D. C
  10. Ahn, Y. H., Park, E. J., Oh, U. K., Park, S. H., Webster, G., and A. J. Weightman (2005), Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production, FEMS Micro. letters 249, 31-38 https://doi.org/10.1016/j.femsle.2005.05.050