UNITARY INTERPOLATION ON AX = YIN A TRIDIAGONAL ALGEBRA ALG \mathcal{L}

YOUNG SOO JO, JOO HO KANG AND DONGWAN PARK

Abstract. Given operators X and Y acting on a separable complex Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H} . Then the following are equivalent:

- (1) There exists a unitary operator $A=(a_{ij})$ in $\mathrm{Alg}\mathcal{L}$ such that AX=Y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $|\alpha_j| = 1$ and $y_{ij} = \alpha_j x_{ij}$ for $j \in \mathbb{N}$.

1. Introduction

Let \mathcal{A} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H} . An interpolation question for \mathcal{A} asks for which X and Y is there a bounded operator $A \in \mathcal{A}$ such that AX = Y. An n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[8]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance[9]: his result was extended by Hopenwasser[2] to the case that \mathcal{U} is a CSL-algebra. Munch[10] obtained conditions for interpolation in case A is

Received August 10, 2005. Accepted September 30, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases : Unitary Interpolation, CSL-Algebra, Tridiagonal Algebra, $Alg\mathcal{L}$.

required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in a Hilbert space \mathcal{H} . Then $\langle x,y \rangle$ means the inner product of the vectors x and y. Let x be a subset of a Hilbert space x. Then x means the closure of x and x had x the orthogonal complement of x. Let x be the set of all natural numbers and let x be the set of all complex numbers.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \dots\}$. Let x_1, x_2, \dots, x_n be vectors in \mathcal{H} .

Then $[x_1, x_2, \dots, x_n]$ means the closed linear subspace generated by the vectors x_1, x_2, \dots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \dots)$. Then the algebra $Alg\mathcal{L}$ is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson[1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let $\mathcal A$ be the algebra consisting of all bounded operators acting on $\mathcal H$ of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg \mathcal{L} = \mathcal{A}$.

We consider interpolation problems for the above tridiagonal algebra $\mathrm{Alg}\mathcal{L}.$

Lemma 1. Let $A = (a_{ij})$ be an operator in the tridiagonal algebra Alg \mathcal{L} . Then the following are equivalent:

- (1) $A = (a_{ij})$ is unitary.
- (2) A is a diagonal operator with $|a_{ii}| = 1$ for all $i \in \mathbb{N}$.

Proof. Suppose that $A=(a_{ij})$ is unitary. Since $AA^*=A^*A=I$, $a_{ij}=0$ for all $i\neq j$ and $|a_{ii}|=1$. So A is a diagonal operator with $|a_{ii}|=1$ for all $i\in\mathbb{N}$. The converse is clear.

Theorem 2. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on \mathcal{H} . Then the following are equivalent:

- (1) There exists a unitary operator $A = (a_{ij})$ in $Alg \mathcal{L}$ such that AX = Y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $|\alpha_i| = 1$ and $y_{ij} = \alpha_i x_{ij}$ for all $i, j \in \mathbb{N}$.

Proof. Suppose that $A=(a_{ij})$ is a unitary operator in Alg \mathcal{L} such that AX=Y. By Lemma 1, A is a diagonal operator with $|a_{ll}|=1$ for all $l \in \mathbb{N}$. Let $\alpha_l=a_{ll}$ for $l=1,2,\cdots$. Since AX=Y, $y_{ij}=a_{ii}x_{ij}=\alpha_ix_{ij}$ for $i,j=1,2,\cdots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $|\alpha_j| = 1$ and $y_{ij} = \alpha_i x_{ij}$ for $i, j = 1, 2, \cdots$. Let $A = (a_{jj})$ be a diagonal operator with $a_{jj} = \alpha_j$ for each $j \in \mathbb{N}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator and unitary. Since $y_{ij} = \alpha_i x_{ij}$ for all $i, j = 1, 2, \cdots, AX = Y$.

Theorem 3. Let n be a fixed natural number $(n \ge 2)$. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \dots, n$, where n is a fixed natural number. Then the following are equivalent:

- (1) There exists a unitary operator $A = (a_{jk})$ in Alg \mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \dots, n$.
- (2) There is a bounded sequence $\{\alpha_m\}$ in \mathbb{C} such that $|\alpha_k| = 1$ and $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i = 1, 2, \dots, n$ and $j, k \in \mathbb{N}$.

Proof. Suppose that $A=(a_{jk})$ is a unitary operator in $Alg\mathcal{L}$ such that $AX_i=Y_i$ for $i=1,2,\cdots,n$. By Lemma 1, A is a diagonal operator with $|a_{kk}|=1$ for all k in \mathbb{N} . Let $\alpha_k=a_{kk}$ for $k=1,2,\cdots$. Then $\{\alpha_m\}$ is bounded. Since $AX_i=Y_i,\ y_{jk}^{(i)}=a_{jj}x_{jk}^{(i)}=\alpha_jx_{jk}^{(i)}$ for $i=1,2,\cdots,n$ and $j,k=1,2,\cdots$.

Conversely, assume that there is a bounded sequence $\{\alpha_m\}$ in $\mathbb C$ such that $|\alpha_k|=1$ and $y_{jk}^{(i)}=\alpha_j x_{jk}^{(i)}$ for $i=1,2,\cdots,n$ and $j,k=1,2,\cdots$. Let A be a diagonal operator with diagonal $\{\alpha_m\}$. Since $\{\alpha_m\}$ is bounded, A is a bounded operator. Since $y_{jk}^{(i)}=\alpha_j x_{jk}^{(i)}$ for $i=1,2,\cdots,n$ and $j,k=1,2,\cdots,AX_i=Y_i$.

By the similar way with the above, we have the following.

Theorem 4. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $X_i = (x_{jk}^{(i)})$ and $Y_i = (y_{jk}^{(i)})$ be operators acting on \mathcal{H} for $i = 1, 2, \cdots$. Then the following are equivalent:

- (1) There exists a unitary operator $A = (a_{jk})$ in Alg \mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \cdots$.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $|\alpha_k| = 1$ and $y_{jk}^{(i)} = \alpha_j x_{jk}^{(i)}$ for all $i, j, k \in \mathbb{N}$.

References

- [1] Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105–120.
- [2] Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121–126.
- [3] Hopenwasser, A., *Hilbert-Schmidt interpolation in CSL algebras*, Illinois J. Math. (4), **33** (1989), 657–672.
- [4] Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
- [5] Jo, Y. S. and Choi, T. Y., Isomorphisms of $Alg\mathcal{L}_n$ and $Alg\mathcal{L}_{\infty}$, Michigan Math. J. 37 (1990), 305–314.
- [6] Jo, Y. S., Kang, J. H. and Dongwan Park, Equations AX = Y and Ax = y in $Alg\mathcal{L}$, to be appeared on J. of K. M. S..
- [7] Katsoulis, E., Moore, R. L., Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory 29 (1993), 115– 123.
- [8] Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273–276.
- [9] Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.
- [10] Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407–418.

Young Soo Jo and Dongwan Park

Dept. of Math., Keimyung University

Daegu, Korea

Email: ysjo@kmu.ac.kr and dpark@kmu.ac.kr

Joo Ho Kang

Dept. of Math., Daegu University

Daegu, Korea

Email: jhkang@daegu.ac.kr