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UNITARY INTERPOLATION ON AX =Y
IN A TRIDIAGONAL ALGEBRA ALGC(

Young Soo Jo, Joo Ho KANG AND DONGWAN PARK

Abstract. Given operators X and Y acting on a separable complex
Hilbert space H, an interpolating operator is a bounded operator
A such that AX = Y. We show the following : Let Algl be a
subspace lattice acting on a separable complex Hilbert space H
and let X = (z;;) and Y = (yi;) be operators acting on H. Then

the following are equivalent:

(1) There exists a unitary operator A = (a;;) in AlgL such that
AX =Y.
(2) There is a bounded sequence {an} in C such that |aj| =1

and y;; = a;z;; for j €N

1. Introduction

Let A be a subalgebra of the algebra B(H) of all operators acting
on a Hilbert space H and let X and Y be operators acting on H. An
interpolation question for A asks for which X and Y is there a bounded
operator A € A such that AX =Y. An n-vector interpolation problem
was considered for a C*-algebra U by Kadison(8]. In case U is a nest
algebra, the (one-vector) interpolation problem was solved by Lance[9):
his result was extended by Hopenwasser|2] to the case that U is a CSL-

algebra. Munch[10] obtained conditions for interpolation in case A is
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required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra.
Hopenwasser(3] once again extended the interpolation condition to the
ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser’s
paper also contains a sufficient condition for interpolation n-vectors,

although necessity was not proved in that paper.

We establish some notations and conventions. A commutative sub-
space lattice £, or CSL L is a strongly closed lattice of pairwise-commuti-
ng projections acting on a Hilbert space H. We assume that the projec-
tions 0 and I lie in £. We usually identify projections and their ranges,
so that it makes sense to speak of an operator as leaving a projection
invariant. If £ is CSL, AlgL is called a CSL-algebra. The symbol Algl
is the algebra of all bounded operators on H that leave invariant all
the projections in £. Let x and y be two vectors in a Hilbert space H.
Then (z,y) means the inner product of the vectors x and y. Let M be
a subset of a Hilbert space H. Then M means the closure of M and
M the orthogonal complement of M. Let N be the set of all natural
numbers and let C be the set of all complex numbers.

2. Results

Let H be a separable complex Hilbert space with a fixed orthonormal

basis {e1,ez, - }. Let 1,29, - ,x, be vectors in H.
Then (21,2, - ,Z,) means the closed linear subspace generated by the
vectors z1,Ts, - - ,Zn. Let L be the subspace lattice generated by the sub-

spaces 2k, B2k-1, €2k, €2k+1) (K =1,2,---). Then the algebra AlgL is
called a tridiagonal algebra which was introduced by F. Gilfeather and
D. Larson[l]. These algebras have been found to be useful counterex-

ample to a number of plausible conjectures.

Let A be the algebra consisting of all bounded operators acting on H

of the form
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with respect to the orthonormal basis {ei,es,---}, where all non-
starred entries are zero. It is easy to see that AlgL=A.

We consider interpolation problems for the above tridiagonal algebra
AlgLl.

Lemma 1. Let A = (a;;) be an operator in the tridiagonal algebra
AlgL. Then the following are equivalent:

(1) A = (ayj) is unitary.

(2) A is a diagonal operator with |a;;| = 1 for all 7 € N.

Proof. Suppose that A = (a;;) is unitary. Since AA* = A"A =1
a;; = 0 for all 4 # j and |a;| = 1. So A is a diagonal operator with
lais| = 1 for all < € N. The converse is clear. O

Theorem 2. Let Algl be the tridiagonal algebra on a separable
complex Hilbert space H and let X = (x;;) and Y = (yi;) be operators
acting on H. Then the following are equivalent:

(1) There exists a unitary operator A = (a;;) in AlgL such that
AX =Y.

(2) There is a bounded sequence {a} in C such that |a;| = 1 and
yi; = a;x; for all 4,5 € N.

Proof. Suppose that A = (a;;) is a unitary operator in AlgL such that
AX =Y. By Lemma 1, A is a diagonal operator with lay| =1 for all
leN. Let ¢y =ay for 1 =1,2,---. Since AX =Y, yij = @iiTij = QiTij
fori,7=1,2,---.
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Conversely, assume that there is a bounded sequence {ay,} in C such
that |aj| = 1 and y;; = ayzy; for 4,5 = 1,2,---. Let A = (aj;) be a
diagonal operator with a;; = «; for each j € N. Since {a,} is bounded,
A is a bounded operator and unitary. Since y;; = a;x;; for all 4,j =
1,2,---, AX = Y. 0

Theorem 3. Let n be a fixed natural number (n > 2). Let AlgL be
the tridiagonal algebra on a separable complex Hilbert space H and let
X;=(z (l)) and Y; = (y](k)) be operators acting on H for i =1,2,--- ,n,

where n is a fixed natural number. Then the following are equivalent:

(1) There exists a unitary operator A = (ajx) in AlgL such that
AX; =Y fori=1,2,--- ,n

(2) There is a bounded sequence {a,} in C such that |ax| = 1 and
y](k) = aja:;ik) foralli=1,2,--- ,n and 5,k € N.

Proof. Suppose that A = (a;) is a unitary operator in AlgL such that
AX; =Y fori =1,2,--- ,n. By Lemma 1, A is a diagonal operator
with |agx| =1 for all k in N. Let oy = agx for k =1,2,---. Then {am}
is bounded. Since AX; =Y}, y(k) = a”m(lk) = a;T glk) fori =1,2,--- ,n
and j,k=1,2,--

Conversely, assume that there is a bounded sequence {a,, } in C such
that |ax| = landyj(z) = oz yk) fori=1,2,--- ,;nand j,k=1,2,---. Let
A be a diagonal operator with diagonal {a,}. Since {a,,} is bounded,
A is a bounded operator. Since 3/52 = ang.zk) for i = 1,2,--- ,n and
5 k=1,2,---, AX; =Y. a

By the similar way with the above, we have the following.

Theorem 4. Let Algl be the tridiagonal algebra on a separable
complex Hilbert space H and let X; = ( ) v)and Y; = ( ](2) be operators
acting on ‘H for i = 1,2,---. Then the followmg are equivalent:
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(1) There exists a unitary operator A = (aji) in AlgL such that

AX; =Y, fori=1,2, --.

(2) There is a bounded sequence {a,} in C such that |ay| = 1 and

Y\ = ajal) for all i, 5,k € N.
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