INTUITIONISTIC FUZZY IDEALS OF A SEMIGROUP

TAE-CHON AHN, KUL HUR, KYUNG-WON JANG AND SEOK-BEOM ROH

Abstract. We give the characterization of an intuitionistic fuzzy ideal[resp. intuitionistic fuzzy left ideal, an intuitionistic fuzzy right ideal and an intuitionistic fuzzy bi-ideal] generated by an intuitionistic fuzzy set in a semigroup without any condition. And we prove that every intuitionistic fuzzy ideal of a semigroup S is the union of a family of intuitionistic fuzzy principle ideals of S. Finally, we investigate the intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set in S^1 .

0. Introduction

In his pioneering paper [21], Zadeh introduced the notion of a fuzzy set in a set X as a mapping from X into the closed unit interval [0,1]. Since then, some researchers [16,17,19,20] applied this notion to semigroup and group theory.

In 1986, Atanassov[2] introduced the concept of intuitionistic fuzzy sets as the generalization of fuzzy sets. Recently Çoker and his colleagues[6,7,8], Hur and his colleagues [13], and Lee and Lee[18] introduced the concept of intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets and investigated some of their properties. In 1989, Biswas[3] introduced the concept of intuitionistic fuzzy subgroups and

Received September 16, 2005. Accepted November 3, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 03F55, 20M12.

Key words and phrases: intuitionistic fuzzy set, intuitionistic fuzzy point, intuitionistic fuzzy ideals, intuitionistic fuzzy principle ideal.

studied some of it's properties. In 2003, Banerjee and Basnet[2] investigated intuitionistic fuzzy subrings and intuitionistic fuzzy ideals using intuitionistic fuzzy sets. Also, Hur and his colleagues[1,9-11, 14, 15] applied the notion of intuitionistic fuzzy sets to algebra. Moreover, Hur and his colleagues[12] applied one to topological group.

In this paper, we give the characterization of an intuitionistic fuzzy ideal [resp. intuitionistic fuzzy left ideal, an intuitionistic fuzzy right ideal and an intuitionistic fuzzy bi-ideal] generated by an intuitionistic fuzzy set in a semigroup without any condition. And we prove that every intuitionistic fuzzy ideal of a semigroup S is the union of a family of intuitionistic fuzzy principle ideals of S. Finally, we investigate the intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set in S^1 .

1. Preliminaries

We will list some concept and one result needed in the later sections. For sets X, Y and Z, $f = (f_1, f_2) : X \to Y \times Z$ is called a *complex mapping* if $f_1 : X \to Y$ and $f_2 : X \to Z$ are mappings.

Throughout this paper, we will denote the unit interval [0,1] as I.

Definition 1.1[2, 6]. Let X be a nonempty set. A complex mapping $A = (\mu_A, \nu_A) : X \to I \times I$ is called an *intuitionistic fuzzy set*(in short, IFS) in X if $\mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$, where the mapping $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership(namely $\nu_A(x)$) of each $x \in X$ to A, respectively. In particular, 0_{\sim} and 1_{\sim} denote the *intuitionistic fuzzy empty set* and the *intuitionistic fuzzy whole set* in a set X defined by $0_{\sim}(x) = (0,1)$ and $1_{\sim}(x) = (1,0)$ for each $x \in X$, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 1.2[2]. Let X be a nonempty sets and let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be an IFSs in X. Then

- (1) $A \subset B$ if and only if $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B if and only if $A \subset B$ and $B \subset A$.
- (3) $A^c = (\nu_A, \mu_A)$.
- (4) $A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B).$
- (6) $[]A = (\mu_A, 1 \mu_A), <> A = (1 \nu_A, \nu_A).$

Definition 1.3[6]. Let $\{A_i\}_{i\in J}$ be an arbitrary family of IFSs in X, where $A_i = (\mu_{A_i}, \nu_{A_i})$ for each $i \in J$. Then

- $(1) \bigcap A_i = (\wedge \mu_{A_i}, \vee \nu_{A_i}).$
- (2) $\bigcup A_i = (\vee \mu_{A_i}, \wedge \nu_{A_i}).$

Definition 1.4[18]. Let $\lambda, \mu \in I$ with $\lambda + \mu \leq 1$. An *intuitionistic* fuzzy point(in short, IFP) $x_{(\lambda,\mu)}$ of X is an IFS in a set X defined by for each $y \in X$

$$x_{(\lambda,\mu)}(y) = \begin{cases} (\lambda,\mu) & \text{if } y = x, \\ (0,1) & \text{otherwise.} \end{cases}$$

In this case, x is called the *support* of $x_{(\lambda,\mu)}$ and λ and μ are called the *value* and the *nonvalue* of $x_{(\lambda,\mu)}$, respectively. An IFP $x_{(\lambda,\mu)}$ is said to belong to an IFS $A = (\mu_A, \nu_A)$ in X, denoted by $x_{(\lambda,\mu)} \in A$, if $\lambda \leq \mu_A(x)$ and $\mu \geq \nu_A(x)$.

Clearly an intuitionistic fuzzy point can be represented by an ordered pair of fuzzy points as follows:

$$x_{(\lambda,\mu)} = (x_{\lambda}, 1 - x_{1-\mu})$$

We will denote the set of all IFPs in a set X as $IF_P(X)$.

Definition 1.5[9]. Let A be an IFS in a set X and let $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$. Then the set $A^{(\lambda,\mu)} = \{x \in X : \mu_A(x) \geq \lambda \text{ and } \nu_A(x) \leq \mu\}$ is called a (λ, μ) -level subset of A.

Result 1.A[18, Theorem 2.4]. Let X be a set and let $A \in IFS(X)$. Then

$$A = \bigcup \{x_{(\lambda,\mu)} : x_{(\lambda,\mu)} \in \mathcal{A}\}.$$

In fact, it is not difficult to see that

$$A = \bigcup_{x \in A^{(0,1)}} x_{A(x)}.$$

2. Intuitionistic ideals generated by intuitionistic fuzzy sets

Let S be a semigroup. By a *subsemigroup* of S we mean a non-empty subset of A of S such that

$$A^2 \subset A$$

and by a left [resp. right] ideal of S we mean a non-empty subset A of S such that

$$SA \subset A$$
 [resp. $AS \subset A$].

By two-sided ideal or simply ideal we mean a subset A of S which is both a left and a right ideal of S. We well denote the set of all left ideals [resp. right ideals and ideals] of S as LI(S) [resp. RI(S) and I(S)].

Definition 2.1[9]. Let S be a semigroup and let $0_{\sim} \neq A \in IFS(S)$. Then A is called an:

(1) intuitionistic fuzzy subsemigroup (in short, IFSG) of S if

$$\mu_A(xy) \ge \mu_A(x) \wedge \mu_A(y)$$
 and $\nu_A(xy) \le \nu_A(x) \vee \nu_A(y)$

for any $x, y \in S$,

(2) intuitionistic fuzzy left ideal (in short, IFLI) of S if

$$\mu_A(xy) \ge \mu_A(y)$$
 and $\nu_A(xy) \le \nu_A(y)$

for any $x, y \in S$,

(3) intuitionistic fuzzy right ideal (in short, IFSG) of S if

$$\mu_A(xy) \ge \mu_A(x)$$
 and $\nu_A(xy) \le \nu_A(x)$

for any $x, y \in S$,

(4) intuitionistic fuzzy (two-sided) ideal (in short, IFI) of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right ideal of S.

We well denote the set of all IFSGs [resp. IFLIs, IFRIs and IFIs] of S as IFSG(S) [resp. IFLI(S), IFRI(S) and IFI(S)]. It is clear that $A \in$ IFI(S) if and only if $\mu_A(xy) \ge \mu_A(x) \lor \mu_A(y)$ and $\nu_A(xy) \le \nu_A \land \nu_A(y)$ for any $x,y \in S$, and if $A \in$ IFLI(S)[resp. IFRI(S) and IFI(S)], then $A \in$ IFSG(S).

Result 2.A[9, Proposition 3.7 and 14, Proposition 2.3]. Let S be a semigroup and let $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$. Then $A \in IFSG(S)$ [resp. IFI(S), IFLI(S) and IFRI(S)] if and only if $A^{(\lambda,\mu)}$ is a subsemigroup [resp. ideal, left ideal and right ideal] of S.

It is well-known[4] that I is complete completely distributive lattice. Thus we have the following result.

Proposition 2.2. Let S be a semigroup. Then IFI(S) is a complete completely distributive lattice with with respect to the meet " \cap " and the union " \cup ".

Proof. Let $\{A_{\alpha}\}_{{\alpha}\in\Gamma}\subset \mathrm{IFI}(S)$, where Γ denotes the index set. Let $x,y\in S$. Then

$$\begin{split} \mu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(xy) &= \bigvee_{\alpha\in\Gamma}\mu_{A_{\alpha}}(xy) \\ &\geq \bigvee_{\alpha\in\Gamma}[\mu_{A_{\alpha}}(x)\vee\mu_{A_{\alpha}}(y)] \ \ (\text{Since } A_{\alpha}\in \text{IFI}(S) \text{ for each } \alpha\in\Gamma) \\ &= (\bigvee_{\alpha\in\Gamma}\mu_{A_{\alpha}}(x))\vee(\bigvee_{\alpha\in\Gamma}\mu_{A_{\alpha}}(y)) = (\mu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(x))\vee(\mu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(y)) \end{split}$$
 and

$$\begin{split} \nu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(xy) &= \bigwedge_{\alpha\in\Gamma}\nu_{A_{\alpha}}(xy) \leq \bigwedge_{\alpha\in\Gamma}[\nu_{A_{\alpha}}(x)\wedge\nu_{A_{\alpha}}(y)] \\ &= (\bigwedge_{\alpha\in\Gamma}\nu_{A_{\alpha}}(x))\wedge(\bigwedge_{\alpha\in\Gamma}\nu_{A_{\alpha}}(y)) = (\nu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(x))\wedge(\nu_{\cup_{\alpha\in\Gamma}A_{\alpha}}(y)). \end{split}$$
 Also,

$$\mu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(xy) = \bigwedge_{\alpha\in\Gamma}\mu_{A_{\alpha}}(xy)$$

$$= \bigwedge_{\alpha\in\Gamma}[\mu_{A_{\alpha}}(x)\vee\mu_{A_{\alpha}}(y)] \text{ (Since } A_{\alpha}\in\mathrm{IFI}(S) \text{ for each } \alpha\in\Gamma)$$

$$\geq (\bigwedge_{\alpha\in\Gamma}\mu_{A_{\alpha}}(x))\vee(\bigwedge_{\alpha\in\Gamma}\mu_{A_{\alpha}}(y)) = (\mu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(x))\vee(\mu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(y))$$
and

$$\begin{split} \nu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(xy) &= \bigvee_{\alpha\in\Gamma}\nu_{A_{\alpha}}(xy) = \bigvee_{\alpha\in\Gamma}[\nu_{A_{\alpha}}(x)\vee\nu_{A_{\alpha}}(y)] \\ &\leq (\bigvee_{\alpha\in\Gamma}\nu_{A_{\alpha}}(x))\vee(\bigvee_{\alpha\in\Gamma}\nu_{A_{\alpha}}(y)) = (\nu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(x))\vee(\nu_{\cap_{\alpha\in\Gamma}A_{\alpha}}(y)). \\ \text{Hence } \cup_{\alpha\in\Gamma}A_{\alpha}, \ \cap_{\alpha\in\Gamma}A_{\alpha}\in \mathrm{IFI}(S). \ \text{This completes the proof.} \end{split}$$

Definition 2.3. Let S be a semigroup and let $A \in IFS(S)$. Then the least IFLI[resp. IFRI and IFI] of S containing A is called the IFLI[resp. IFRI and IFI] of S generated by A and is denoted by $(A)_L[resp. (A)_R]$ and $(A)_L[resp. (A)_R]$.

Lemma 2.4. Let X be a set, let $A \in IFS(X)$ and let $x \in X$. Then $A(x) = (\bigvee_{x \in A^{(\lambda,\mu)}} \lambda, \bigwedge_{x \in A^{(\lambda,\mu)}} \mu)$, where $\lambda, \mu \in I$ with $\lambda + \mu \leq 1$.

Proof. Let $\lambda_0 = \bigvee_{x \in A^{(\lambda,\mu)}} \lambda$, let $\mu_0 = \bigwedge_{x \in A^{(\lambda,\mu)}} \mu$ and let $\varepsilon > 0$. Then $\bigvee_{x \in A^{(\lambda,\mu)}} \lambda > \lambda_0 - \varepsilon$ and $\bigwedge_{x \in A^{(\lambda,\mu)}} \mu < \mu_0 + \varepsilon$. Thus there exists $(s,t) \in \{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\}$ such that $s > \lambda_0 - \varepsilon$ and $t < \mu_0 + \varepsilon$. Since $x \in A^{(\lambda,\mu)}$, $\mu_A(x) \geq \lambda$ and $\nu_A(x) \leq \mu$. Then $\mu_A(x) > \lambda_0 - \varepsilon$ and $\nu_A(x) < \mu_0 + \varepsilon$. Since ε is an arbitrary real number, $\mu_A(x) \geq \lambda_0$ and $\nu_A(x) \leq \mu_0$. On the other hand, let A(x) = (s,t). Then $x \in A^{(s,t)}$. Thus $(s,t) \in \{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\}$. So $s \leq \bigvee_{x \in A^{(\lambda,\mu)}} \lambda$ and $t \geq \bigwedge_{x \in A^{(\lambda,\mu)}} \mu$, i.e., $\mu_A(x) = s \leq \lambda_0$ and $\nu_A(x) = t \geq \mu_0$. Hence $A(x) = (\mu_A(x), \nu_A(x)) = (\lambda_0, \mu_0)$.

Theorem 2.5. Let S be a semigroup, let $A \in IFS(S)$ and let $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$. We define a complex mapping $A^* = (\mu_{A^*}, \nu_{A^*}) : S \to I \times I$ as follows: for each $x \in S$

$$A^*(x) = (\bigvee_{x \in (A^{(\lambda,\mu)})} \lambda, \bigwedge_{x \in (A^{(\lambda,\mu)})} \mu).$$

Then $A^* = (A)$, where $(A^{(\lambda,\mu)})$ denotes the ideal generated by $A^{(\lambda,\mu)}$.

Proof. For each $x \in S$, let $(s,t) \in \{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\}$. Then $x \in A^{(s,t)}$. Thus $x \in (A^{(s,t)})$. So $(s,t) \in \{(\lambda,\mu) : x \in (A^{(\lambda,\mu)})\}$, i.e., $\{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\} \subset \{(\lambda,\mu) : x \in (A^{(\lambda,\mu)})\}$. Then, by Lemma 2.4,

$$\mu_A(x) = \bigvee_{x \in A^{(\lambda,\mu)}} \lambda \le \bigvee_{x \in (A^{(\lambda,\mu)})} \lambda = \mu_{A^*}(x)$$

and

$$\nu_A(x) = \bigwedge_{x \in A^{(\lambda,\nu)}} \mu \ge \bigwedge_{x \in (A^{(\lambda,\nu)})} \mu = \nu_{A^*}(x).$$

So $A \subset A^*$.

For each $(s,t) \in \text{Im } A^*$, let $s_n = s - \frac{1}{n}$ and $t_n = t + \frac{1}{n}$ for each $n \in \mathbb{N}$. Let $x \in A^{*(s,t)}$. Then $\mu_{A^*}(x) \geq s$ and $\nu_{A^*}(x) \leq t$. Thus, for each $n \in \mathbb{N}$

$$\bigvee_{x \in (A^{(\lambda,\mu)})} \lambda \ge s > s - \frac{1}{n} = s_n$$

and

$$\bigwedge_{x \in (A^{(\lambda,\mu)})} \mu \le t < t + \frac{1}{n} = t_n.$$

So there exists a $(\lambda_n, \mu_n) \in \{(\lambda, \mu) : x \in (A^{(\lambda, \mu)})\}$ such that $\lambda_n > s_n$ and $\mu_n < t_n$. Then $A^{(\lambda_n, \mu_n)} \subset A^{(s_n, t_n)}$. So $x \in (A^{(\lambda_n, \mu_n)}) \subset (A^{(s_n, t_n)})$. Consequently, we have $x \in \bigcap_{n \in \mathbb{N}} (A^{(s_n, t_n)})$. Now let $x \in \bigcap_{n \in \mathbb{N}} (A^{(s_n, t_n)})$. Then clearly $(s_n, t_n) \in \{(\lambda, \mu) : x \in (A^{(\lambda, \mu)})\}$ for each $n \in \mathbb{N}$. Thus for each $n \in \mathbb{N}$,

$$s - \frac{1}{n} = s_n \le \bigvee_{x \in (A^{(\lambda,\mu)})} \lambda = \mu_{A^*}(x)$$

and

$$t + \frac{1}{n} = t_n \ge \bigwedge_{x \in (A^{(\lambda,\mu)})} \mu = \nu_{A^*}(x).$$

Since n is an arbitrary positive integer, $s \leq \mu_{A^*}(x)$ and $t \geq \nu_{A^*}(x)$. Thus $(s,t) \in A^{*(s,t)}$. So $A^{*(s,t)} = \bigcap_{n \in \mathbb{N}} (A^{(s_n,t_n)})$. It is clear that $\bigcap_{n \in \mathbb{N}} (A^{(s_n,t_n)})$ is an ideal of S. So, by Result 2.A, $A^* \in IFI(S)$.

Now let $B \in \text{IFI}(S)$ such that $A \subset B$ and let $x \in S$. If $A^*(x) = (0,1)$, then clearly $\mu_{A^*}(x) \leq \mu_B(x)$ and $\nu_{A^*}(x) \geq \nu_B(x)$, i.e., $A^* \subset B$. If $A^*(x)(s,t) \neq (0,1)$, then $x \in A^{*(s,t)} = \bigcap_{n \in \mathbb{N}} (A^{(s_n,t_n)})$. Thus $x \in (A^{(s_n,t_n)}) = A^{(s_n,t_n)}S \cup SA^{(s_n,t_n)}S \cup A^{(s_n,t_n)}S \cup A^{(s_n,t_n)}$ for each $n \in \mathbb{N}$. We consider the following cases:

Case (i): Suppose $x \in A^{(s_n,t_n)}$. Then clearly for each $n \in \mathbb{N}$

$$s_n \le \mu_A(x) \le \mu_B(x)$$
 and $t_n \ge \nu_A(x) \ge \nu_B(x)$.

Case (ii): Suppose $x \in A^{(s_n,t_n)}S$. Then there exist $a \in A^{(s_n,t_n)}$ and $b \in S$ such that x = ab. Thus for each $n \in \mathbb{N}$

$$s_n \le \mu_A(a) \le \mu_B(a) \le \mu_B(ab) = \mu_B(x)$$
and
$$t_n \ge \nu_A(a) \ge \nu_B(a) \ge \nu_B(ab) = \nu_B(x).$$

Case (iii): Suppose $x \in SA^{(s_n,t_n)}$. Then, by the similar arguments of Case (ii), we have $\mu_B(x) \geq s_n$ and $\nu_B(x) \leq t_n$ for each $n \in \mathbb{N}$.

Case (iv): Suppose $x \in SA^{(s_n,t_n)}S$. Then there exist $a \in A^{(s_n,t_n)}$ and $b \in S$ such that x = abc. Since $B \in IFI(S)$, for each $n \in \mathbb{N}$

$$s_n \le \mu_A(a) \le \mu_B(a) \le \mu_B(x)$$
 and $t_n \ge \nu_A(a) \ge \nu_B(a) \ge \nu_B(x)$.

Since n is an arbitrary number in \mathbb{N} , in all, $\mu_{A^*}(x) = s \leq \mu_B(x)$ and $\nu_{A^*}(x) = t \geq \nu_B(x)$. thus $A^* \subset B$. Hence $A^* = (A)$. This complete the proof.

Corollary 2.5. Let S be a semigroup and let $x_{(\lambda,\mu)} \in \mathrm{IF}_P(S)$. We define a complex mapping $(x_{(\lambda,\mu)}): S \to I \times I$ as follows: for each $x \in S$,

$$(x_{(\lambda,\mu)})(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x), \\ (0,1) & \text{if } y \notin (x), \end{cases}$$

where (x) is the principal ideal of S generated by x. Then $(x_{(\lambda,\mu)})$ is the IFI generated by $x_{(\lambda,\mu)}$. In this case, $(x_{(\lambda,\mu)})$ is called the *intuitionistic* fuzzy principal ideal(in short, IFPI) of S generated by $x_{(\lambda,\mu)}$.

Proof. By Theorem 2.5, $(x_{(\lambda,\mu)})(y) = (\bigvee_{z \in (A^{(s,t)})} s, \bigwedge_{z \in (A^{(s,t)})} t)$ for each $y \in S$.

Case (i): Suppose $y \in (x)$. Let $(s,t) \in (0,\lambda] \times [\mu,1)$. Then $A^{(s,t)} = \{z \in S : \mu_{x_{(\lambda,\mu)}}(z) \geq s, \ \nu_{x_{(\lambda,\mu)}}(z) \leq t\} = \{x\}$. Thus $y \in (x) = (A^{(s,t)})$. If $s > \lambda$ and $t < \mu$, then clearly $x_{(\lambda,\mu)} = (0,1)$. So

$$(x_{(\lambda,\mu)})(y) = (\bigvee_{z \in (A^{(s,t)})} s, \bigwedge_{z \in (A^{(s,t)})} t) = (\bigvee_{0 < s \le \lambda} s, \bigwedge_{\mu \le t < 1} t) = (\lambda,\mu).$$

Case (ii): Suppose $y \notin (x)$. Assume that $(x_{(\lambda,\mu)})(y) \neq (0,1)$. Then there exists $(s,t) \in (0,1] \times [0,1)$ with $s+t \leq 1$ such that $y \in (A^{(s,t)})$. Since $A^{(s,t)} \neq (0,1)$, by Case (i), $s \leq \lambda$ and $t \geq \mu$. Thus $A^{(\lambda,\mu)} = \{x\}$. So $y \in (A^{(s,t)}) = (x)$. This is a contradiction. Thus $(x_{(\lambda,\mu)})(y) = (0,1)$. Hence $(x_{(\lambda,\mu)})$ is well-defined.

The following is an easy modification of Theorem 2.5.

Theorem 2.6. Let S be a semigroup and let $A \in IFS(S)$. We define a complex mapping $A^*: S \to I \times I$ as follows: for each $x \in S$,

$$A^*(x) = (\bigvee_{x \in (A^{(\lambda,\mu)})_L} \lambda, \bigwedge_{x \in (A^{(\lambda,\mu)})_L} \mu).$$

Then $A^* = (A)_L$, where $(A^{(\lambda,\mu)})_L$ denotes the left ideal generated by $A^{(\lambda,\mu)}$.

Corollary 2.6. Let S be a semigroup and let $x_{(\lambda,\mu)} \in \operatorname{IF}_P(S)$. We define two complex mappings $(x_{(\lambda,\mu)})_L : S \to I \times I$ and $(x_{(\lambda,\mu)})_R : S \to I \times I$ as follows, respectively: for each $y \in S$,

$$(x_{(\lambda,\mu)})_L(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x)_L, \\ (0,1) & \text{if } y \notin (x)_L, \end{cases}$$

and

$$(x_{(\lambda,\mu)})_R(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x)_R, \\ (0,1) & \text{if } y \notin (x)_R. \end{cases}$$

Then $(x_{(\lambda,\mu)})_L[\text{resp. }(x_{(\lambda,\mu)})_R)$ is the IFLI[resp. IFRI] of S generated by $x_{(\lambda,\mu)}$ in S. In this case, $(x_{(\lambda,\mu)})_L[\text{resp. }(x_{(\lambda,\mu)})_R]$ is called the *intuitionistic fuzzy principal left* [resp. right]ideal(in short, IFPLI[resp. IFPRI]) generated by $x_{(\lambda,\mu)}$.

Proof. The proofs are similar to the case of Corollary 2.5. So we omit. $\hfill\Box$

Remark 2.7. As the dual of Theorem 2.6, $(A)_R$ can be characterized by $(A)_R(x) = (\bigvee_{x \in (A^{(\lambda,\mu)})_R} \lambda, \bigwedge_{x \in (A^{(\lambda,\mu)})_R} \mu)$ for each $x \in S$, where $(A^{(\lambda,\mu)})_R$ denotes the right ideal generated by $A^{(\lambda,\mu)}$.

A nonempty subset A of a semigroup S is called a *bi-ideal* of S if $A^2 \subset A$ and $ASA \subset A$. We will denote the set of all bi-ideals of S as BI(S).

Definition 2.8[14]. Let S be a semigroup and let $0_{\sim} \neq A \in IFS(S)$. Then A is called an *intuitionistic fuzzy bi-ideal* (in short, IFBI) of S if it satisfies the following conditions: for any $x, y, z \in S$.

- (i) $\mu_A(xy) \ge \mu_A(x) \wedge \mu_A(y)$ and $\nu_A(xy) \le \nu_A(x) \vee \nu_A(y)$
- (ii) $\mu_A(xyz) \ge \mu_A(x) \wedge \mu_A(z)$ and $\nu_A(xyz) \le \nu_A(x) \vee \nu_A(z)$.

We will denote the set of all IFBIs of S as IFBI(S).

Result 2.B[14, Proposition 2.8]. Let S be a semigroup and let $A \in IFS(S)$. Then $A \in IFBI(S)$ if and only if $A^{(\lambda,\mu)} \in BI(S)$ for each $(\lambda,\mu) \in I \times I$ with $\lambda + \mu \leq 1$.

Let A be a subset of a semigroup S. Then it is not difficult to see that the bi-ideal $(A)_B$ generated by A in S is $A \cup A^2 \cup ASA$.

The following can be shown by the above comment, Result 2.B and a moderate modification of Theorem 2.5.

Theorem 2.9. Let S be a semigroup and let $A \in IFS(S)$. We define a complex mapping $A^*: S \to I \times I$ as follows: for each $x \in S$,

$$A^*(x) = (\bigvee_{x \in (A^{(\lambda,\mu)})_B} \lambda, \bigwedge_{x \in (A^{(\lambda,\mu)})_B} \mu).$$

Then $A^* = (A)_B$, where $(A)_B$ denotes the IFBI generated by A.

Corollary 2.9. Let S be a semigroup and let $x_{(\lambda,\mu)} \in \mathrm{IF}_P(S)$. We define two complex mappings $(x_{(\lambda,\mu)})_B : S \to I \times I$ as follows, respectively: for each $y \in S$,

$$(x_{(\lambda,\mu)})_B(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x)_B, \\ (0,1) & \text{if } y \notin (x)_B. \end{cases}$$

Then $(x_{(\lambda,\mu)})_B$ is the IFBI of S generated by $x_{(\lambda,\mu)}$ in S. In this case, $(x_{(\lambda,\mu)})_B$ is called the *intuitionistic fuzzy principal bi-ideal*(in short, IF-PBI) generated by $x_{(\lambda,\mu)}$.

Proof. The proofs is similar to the case of Corollary 2.5. So we omit. \Box

It is well-known that every ideal of a semigroup S is the union of some principal ideals of S. Similarly, we have the following result.

Theorem 2.10. Let S be a semigroup. Then every IFI of S is the union of some IFPIs of S.

Proof. Let $A \in IFI(S)$. Then, by Result 1.A,

$$A = \bigcup_{x_{(\lambda,\mu)} \in A} x_{(\lambda,\mu)} = \bigcup_{x \in A^{(0,1)}} x_{A(x)}.$$

Let $y \in S$.

Case (i) : Suppose $A(y) \neq (0, 1)$. Then

$$\begin{split} (\bigcup_{x \in A^{(0,1)}} x_{A(x)})(y) &= (\bigcup_{y \in (z), z \in A^{(0,1)}} (z_{A(z)}))(y) \\ &= (\bigvee_{y \in (z), z \in A^{(0,1)}} \mu_{A(z)}, \bigwedge_{y \in (z), z \in A^{(0,1)}} \nu_{A(z)}). \end{split}$$

If $z \neq y$, then there exist $a_1, a_2, b_1, b_2 \in S$ such that $y = za_1$ or $y = a_2z$ or $y = b_1zb_2$. For any cases, since $A \in IFI(S)$, $\mu_A(y) \geq \mu_a(z)$ and $\nu_A(y) \leq \nu_a(z)$. Thus

$$(\bigcup_{x \in A^{(0,1)}} x_{A(x)})(y) = (\bigvee_{y \in (z), z \in A^{(0,1)}} \mu_{A(z)}, \bigwedge_{y \in (z), z \in A^{(0,1)}} \nu_{A(z)})$$
$$= (\mu_A(y), \nu_A(y)) = A(y).$$

Case (ii): Suppose A(y) = (0,1). Assume that there exists $z \in A^{(0,1)}$ such that $y \in (z)$. Then $\mu_A(y) \ge \mu_A(z)$ and $\nu_A(y) \le \nu_A(z)$ as above. Thus $A(y) \ne (0,1)$. This is a contradiction. Then $y \notin (z)$ for each $z \in A^{(0,1)}$. So

$$A(y) = (\bigcup_{x \in A^{(0,1)}} (x_{A(x)}))(y) = (0,1).$$

Hence, in all, $A = \bigcup_{x \in A^{(0,1)}} x_{A(x)}$. This completes the proof.

3. Some special cases

In this case, we study intuitionistic fuzzy ideal generated by an IFS A in S^1 .

Theorem 3.1. Let S be a semigroup and let $A \in IFS(S^1)$. Then

$$(A)(a) = (\bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \nu_A(x_2)) \text{ for each } a \in S.$$

Proof. Let $a \in S$ such that $a = x_1x_2x_3$ for some $x_1, x_2, x_3 \in S^1$ and let $A(x_2) = (s, t)$. Then $x_2 \in A^{(s,t)}$. Thus $a \in (A^{(s,t)})$. So $A(x_2) \in \{(s,t): a \in (A^{(s,t)})\}$. By theorem 2.5,

$$\mu_{(A)}(a) = \bigvee_{a \in (A^{(s,t)})} s \ge \bigvee_{\substack{a=x_1x_2x_3\\x_1,x_2,x_3 \in S^1}} \mu_A(x_2)$$
(*)

and

$$\nu_{(A)}(a) = \bigwedge_{a \in (A^{(s,t)})} t \le \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \nu_A(x_2).$$

On the other hand, let $(\lambda, \mu) \in \{(s, t) : a \in (A^{(s,t)})\}$. Then clearly $a \in (A^{(\lambda,\mu)})$. Thus there exist $x_1, x_3 \in S^1$ and $x_2 \in A^{(\lambda,\mu)}$ such that $a = x_1x_2x_3$. Since $x_2 \in A^{(\lambda,\mu)}$, $\mu_A(x_2) \ge \lambda$ and $\nu_A(x_2) \le \mu$. Then

$$\mu_A(a) = \bigvee_{a \in (A^{(s,t)})} s \le \bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \mu_A(x_2)$$

$$(*')$$

and

$$\nu_A(a) = \bigwedge_{a \in (A^{(s,t)})} t \ge \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \nu_A(x_2).$$

Hence, by (*) and (*'),

$$A(a) = \left(\bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \nu_A(x_2) \right).$$

This completes the proof.

Remark 3.2. By theorem 2.5 and its dual, we can easily obtain $(A)_L[\text{resp. }(A)_R]$ generated by A in S^1 defined by

$$A_L(a) = (\bigvee_{\substack{a=x_1x_2\\x_1,x_2 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a=x_1x_2\\x_1,x_2 \in S^1}} \nu_A(x_2))$$

[resp. $A_R(a) = (\bigvee_{\substack{a=x_1x_2 \\ x_1, x_2 \in S^1}} \mu_A(x_1), \bigwedge_{\substack{a=x_1x_2 \\ x_1, x_2 \in S^1}} \nu_A(x_1))$], for each $a \in S$.

Theorem 3.3. Let S be a regular semigroup and let $A \in IFS(S^1)$. Then

$$(A)_B(a) = (\bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\mu_A(x_1) \wedge \mu_A(x_3)], \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\nu_A(x_1) \vee \nu_A(x_3)])$$

for each $a \in S$.

Proof. Let $a \in S$ such that $a = x_1x_2x_3$ for some $x_1, x_2, x_3 \in S^1$ and let $(s,t) = (\mu_A(x_1) \wedge \mu_A(x_3), \nu_A(x_1) \vee \nu_A(x_3))$. Then clearly $x_1, x_3 \in A^{(s,t)}$. Thus $a \in (A^{(s,t)})_B$. So $(\mu_A(x_1) \wedge \mu_A(x_3), \nu_A(x_1) \vee \nu_A(x_3)) \in \{(s,t) : a \in (A^{(s,t)})_B\}$. By theorem 2.9,

$$\mu_{(A^{(s,t)})_B}(a) = \bigvee_{a \in (A^{(s,t)})_B} s \ge \bigvee_{\substack{a=x_1x_2x_3\\x_1,x_2,x_3 \in S^1}} [\mu_A(x_1) \wedge \mu_A(x_3)]$$

$$(**)$$

and

$$\nu_{(A^{(s,t)})_B}(a) = \bigwedge_{a \in (A^{(s,t)})_B} t \le \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\nu_A(x_1) \vee \nu_A(x_3)].$$

Now let $(\lambda, \mu) \in \{(s, t) : a \in (A^{(s,t)})_B\}$. Then

 $a = (A^{(s,t)})_B = A^{(s,t)} \cup A^{(s,t)} A^{(s,t)} \cup A^{(s,t)} S^1 A^{(s,t)} = A^{(s,t)} \cup A^{(s,t)} S^1 A^{(s,t)}.$ Since S^1 is regular, $A^{(s,t)} \subset A^{(s,t)} S^1 A^{(s,t)}$. Then $a \in (A^{(s,t)})_B = A^{(s,t)} S^1 A^{(s,t)}$. Thus there exist $x_1, x_2 \in A^{(s,t)}$ and $x_2 \in S^1$ such that $a = x_1 x_2 x_3$. Since $x_1, x_3 \in A^{(s,t)}, \ \mu_A(x_1) \geq s, \ \nu_A(x_1) \leq t \ \text{and} \ \mu_A(x_3) \geq s, \ \nu_A(x_3) \leq t$. Then $\mu_A(x_1) \wedge \mu_A(x_3) \geq s, \ \nu_A(x_1) \vee \nu_A(x_3) \leq t$. Thus

$$\mu_{(A^{(s,t)})_B}(a) = \bigvee_{a \in (A^{(s,t)})_B} s \le \bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\mu_A(x_1) \wedge \mu_A(x_3)]$$

$$(**')$$

$$\nu_{(A^{(s,t)})_B}(a) = \bigwedge_{a \in (A^{(s,t)})_B} t \ge \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\nu_A(x_1) \vee \nu_A(x_3)].$$

Hence, by (**) and (**'),

and

$$(A^{(s,t)})_B(a) = (\bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\mu_A(x_1) \wedge \mu_A(x_3)], \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\nu_A(x_1) \vee \nu_A(x_3)]).$$

This completes the proof.

Acknowledgements. This work has been supported by KESRI (R-2004-B-133-01), which is funded by MOCIE (Ministry of Commerce, Industry and Energy).

References

- [1] Y.S.Ahn, K.Hur and J.H.Ryou, Intuitionistic fuzzy semiprime ideals of a semigroup, To submit.
- [2] K.Atanassove, Intuitionistic fuzzy sets, Fuzzy Set and Systems, 20 (1986), 87-96.
- [3] B.Banerjee and D.Kr. Basnet, *Intuitionistic fuzzy subrings and ideals*, J.Fuzzy Math 11(1) (2003), 139-155.

- [4] G.Birkhoff, Lattice Theory, AMS.Soc.Coll.Publ. 25 (1976).
- [5] R.Biswas, Intuitionistic fuzzy subrings, Mathematical Forum x (1989), 37-46.
- [6] D.Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Set and Systems, 88 (1997), 81-89.
- [7] D.Çoker and A.Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J.Fuzzy Math. 3 (1995), 899-909.
- [8] H.Gurcay, D.Çoker and A.Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J.Fuzzy Math. 5 (1997), 365-378.
- [9] K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems 3(1) (2003), 72-77.
- [10] K.Hur, H.W.Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings, Honam Math.J. 25(1) (2003), 19-41.
- [11] K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy subgroups and cosets, Honam Math.J. 26(1) (2004), 17-41.
- [12] K.Hur, Y.B.Jun and J.H.Ryou, Intuitionistic fuzzy topological groups, Honam Math.J. 26(2) (2004), 163-192.
- [13] K.Hur, J.H.Kim and J.H.Ryou, Intuitionistic fuzzy topological spaces, J.Korea Soc. Math. Edu. Ser. B: Pure Appl. Math. 11(3) (2004), 243-265.
- [14] K.Hur, K.J.Kim and H.K.Song, Intuitionistic fuzzy ideals and bi-ideals, Honam Math. J. 26(3) (2004), 309-330.
- [15] K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math. J. 26(4) (2004), 559-587.
- [16] N.Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), 203-215.
- [17] ______, Fuzzy generalized bi-ideals in semigroups, Inform. Sci. 66 (1992), 235-243.
- [18] S.J.Lee and E.P.Lee, *The category of intuitionistic fuzzy topological spaces*, Bull. Korean Math. Soc. 37(1) (2000), 63-76.
- [19] Wang-jin Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133-139.
- [20] X,Y Xie, Fuzzy ideals in semigroups, J.Fuzzy Math. 7(2) (1999), 357-361.
- [21] L.A.Zadeh, Fuzzy sets, Inoform. and Control 8 (1965), 338-353.

Kul Hur

Division of Mathematics and Informational Statistics

Wonkwang University

Iksan, Chonbuk, Korea 570-749

Email: kulhur@wonkwang.ac.kr

Tae-Chon Ahn, Kyung-Won Jang and Seok-Beom Roh Dept. of Electrical Electronic and Information Engineering Wonkwang University

Iksan, Chonbuk, korea 570-749

 $Email: \{tcahn, jaang, nado\}@wonkwang.ac.kr$