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Toward code division multiple access (CDMA) 
communications and data protection, we propose and 
analyze pseudorandom noise (PN) sequences generated 
from a 2-dimensional array structure of shift-registers.  
For any positive integers m and n, we construct PN 
sequences of period 2mn–1 using an m×n array of registers 
and show that we can generate all shifted PN sequences as 
required by IS-95x with the proper linear combination of 
available sequences. 
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I. Introduction 

Binary sequences that satisfy recursions over the Galois field 
with two elements (GF(2)) are easy to generate and can have 
special properties such as balance, correlation, and shift [1],[2] 
toward their successful applications in acquisition, tracking, 
and orthogonal modulation/demodulation of digital 
communications [3],[4].   

Binary sequences of maximum period 2n-1 that are 
generated by linear recursions over GF(2) of order n≥1 are 
called binary maximal-sequences or pseudorandom noise (PN) 
sequences. A class of generalized PN sequences over GF(pm) 
with good correlation properties (with p being an arbitrary 
prime number and m an arbitrary positive integer) are often 
constructed and utilized [5]-[6]. 

Generalizing the conventional 1-dimensional (1-D) simple 
shift register generator (SSRG) structure for the generation of 
PN sequences [2], we propose and exclusively analyze the 2-D 
shift register structure (2DSRS) of Fig. 1, which depicts an 
m×n array of registers configured as a series feedback 
connection. Using the 2DSRS, we can generate PN sequences 
over GF(2)1) or, alternatively, PN sequences over GF(2m).2) 

Analyzing the 2DSRS, we can build foundations for many new 
applications relating to the IS-95x code division multiple access  
(CDMA) paradigm [7]. In particular, by a state-space analysis of 
this formulation, we show that 2DSRS’s latency, concurrency and 
synchronicity advantages can be exploited in numerous 
communications-related applications as typically found in 
CDMA and other scrambling environments. In this paper, we 
focus on the cases where the connections are selected to produce  
                                                               

1) For example, the 0/1-valued sequences as generated over time in any particular register. 
2) For example, the vector-valued representation sequences as generated over time by each 

m × 1 vertically-aligned registers. 
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Fig. 1. 2DSRS. 
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PN sequences which have natural applications for CDMA [7] 
communications and image and video scrambling [8]. 

After providing a (matrix) dynamical system problem 
formulation of the 2DSRS in the context of a more general 
architecture in section II, we utilize the generation of function-
based analyses to derive some fundamental properties of the 
associated sequences in the shift registers in section III. After 
providing some design examples in section IV, we conclude 
the paper with some comments on its significance with respect 
to theory and applications in section V. 

II. Problem Formulation 

For arbitrary (henceforth, fixed) positive integers m and n, 
we first consider an arbitrarily linearly networked connection 
called a 2-D general register structure (2DGRS) involving an 
m×n array of registers. 

Utilizing the dynamical system method [9], we denote the 
overall state at each time t∈Z+ of the 2DSRS by the mn-
dimensional column vector, s(t), 
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consisting of n m-dimensional column subvectors, si(t), each 
representing the state of the i-th vertically-aligned registers3) 
(VARs) at time t∈Z+ lying in (field F-induced) vector space 

                                                               
3) For example, i-th column of the m × n array of registers. 

(Fn, F)=({0,1}n,{0,1}) with field operations.4) The feedback 
dynamics of the 2DGRS—reflecting on the GMW sequence 
construction [10]—can be modeled by an autonomous 
dynamical equation, and the output can be assumed to be 
generated via an mn-dimensional masking5)  column vector 
consisting of n m-dimensional masking column subvectors 
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We then have the following dynamical system equations with 
state and output equations, involving the mn×mn state 
transition matrix Q which consists of n2 m×m feedback 

matrices n
jiij 1,}{ =Q . 

With s(0) given, for all t∈Z+, 
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4) For example, all addition and multiplication field operations in this paper are mod-2 

addition and multiplication, respectively. 
5) This (linear combination) formulation encompasses most applications pertaining to IS-

95x communications and scrambling employment. 
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 y(t;d)=dTs(t).                 (4) 

It is clear from [9] that the dynamical system equations as 
defined by (3) and (4) have solutions as determined by state 
transition matrix Q and initial conditions s(0). 

Recall that the feedback connections of Fig. 1, denoted by 
the collection of n m×m connection matrices ,}{ 1

n
kk =C  may 

also be enumerated as either a collection n
k

m
j

k
j 11}}{{ ==c  of 

m-dimensional column vectors called connection vectors or a 
collection of n

k
m

ji
k
ijc 11, }}{{ == with connection values 0 or 1, as 

depicted in detail by the (magnified) gray area in Fig. 1. 
Observation 1.  
The 2DSRS is a special instance of the 2DGRS. 
Proof. The 2DSRS with the connection matrices n

kk 1}{ =C  
is a 2DGRS with 
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In the next section, we will analyze the 2DSRS using the 
2DGRS formulation. 

III. Analysis 

In this section—as was true in the classical derivation [3] and 
paralleling our comments following (3) and (4)—we derive the 
generating functions from the 2DSRS’s VARs. We also derive 
outputs as functions of connection matrices6) n

kk 1}{ =C and initial 
conditions7) s(0). Then, we verify that all of the involved sequences 
become PN sequences under appropriate conditions on the 
connection topology.  

With the indeterminate variable x and, as depicted in Fig. 1, 
the generating function s1(x) corresponds to the m-dimensional 
column vector-valued sequence out of the leftmost VAR and is 
written as 
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6) Alternatively, hardware topology of the SSRG configuration [3]. 
7) Alternatively, initial values n

kk 1)}0({ =s  in the VARs. 

and the following (matrix) relation pertaining to 2DSRS is still 
valid8): 

  F(x) s1(x)=g(x),             (7) 

where 
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Under the assumption that F(x) is invertible,9) (7) has the 
solution 
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and |Gj(x)|and |F(x)|are determinants of Gj(x) and F(x), 
respectively. 

The following observations pertaining to |F(x)| of 2DSRS 
(8) are extensions of and deducible from those for the 1-
dimensional structure [1]-[3]: 

Observation 2.   
For the 2DSRS with any connection matrices, n

kk 1}{ =C , and 
any initial state vector, s(0), the components of s1(x) are rational 
functions. 

Proof. |F(x)| and |Gj(x)| of (8) and (12), respectively, are 
clearly polynomials such that 

[ ] [ ] mjmnxmnx j ,...,1,1)(and)( =∀−≤∂≤∂ GF , 

                                                               
8) Notice that when m=1, the relation reduces to the familiar formula corresponding to the 

1-D SSRG [1]-[3]. 
9) We assume (for PN Code design purposes) invertibility of F(x) throughout this paper; 

invertibility refers to matrix invertibility over the field of rational functions (over GF(2)). 
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where )]([ xh∂ denotes the degree of the polynomial h(x). 
Applying this equation to (11) and (12) proves the observation. � 

With a judicious choice of the connection matrices, n
kk 1}{ =C , 

it is clear that the polynomial |F(x)| can be designed to be 
primitive.10) In this case, the following observation becomes 
relevant with respect to our ultimate objective of designing PN 
generators. 

Observation 3. 
For the 2DSRS with connection matrices n

kk 1}{ =C  such 
that |F(x)| is a degree mn primitive polynomial over GF(2) 
and for any initial state vector s(0), the components of s1(x) are 
proper rational functions.                             

Proof. By the proof of Observation 2, we have 

[ ] [ ] .,...,1,)(1)( mjxmnmnxj =∀∂=<−≤∂ FG  

Applying this equation to (11) and (12) proves the observation. � 

By further extending the classical arguments [1]-[3], the 
generating function becomes 
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which corresponds to the output sequence y(t;d)=dTs(t) of 
(4) as follows11): 

y(x;d)=dTs(x) 
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Following convention [1]-[3], we identify a one-sided 
sequence, or generating function, with another one-sided 
sequence when they differ in at most a finite number of 
positions; the generating function in (14) is therefore identified 

                                                               
10) This process generally leads to many solutions, and there is a certain amount of 

flexibility in the design of connection matrices. 
11) Notice that, up to identification as described in the ensuing paragraph with (15), the 

component (vector-valued) generating functions in s(x) in (14) correspond to linear shifts of 
s1(x) which, by (10), is equal to F-1(x)g(x). 

with the following generating function: 
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In particular, we call a sequence periodic if it is periodic after 
some finite time, i.e., when the sequence is identifiable with a 
one-sided periodic sequence. 

When we denote the standard basis as 
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we have the Theorem 1. 
Theorem 1. 
For the 2DSRS with connection matrices n

kk 1}{ =C  such 
that |F(x)| is a degree mn primitive polynomial over GF(2), 
we have the following:  

1. For any initial state vector s(0), the components12) of s1(t) 
are PN sequences of period 2mn-1. 

2. The initial state vector s(0) can always be chosen such that  
{ }mn

jjty
1

);(
=

e becomes a basis for (periodic sequence) subspace 
}).1,0{,)};(({ 0≠ddty  In this case, 0)};({ ≠ddty  constitutes all 

distinctly-shifted periodic PN sequences of period 2mn-1.   
Proof. 
1. It is clear from the facts that s1(x) is a proper rational 

function by Observation 3 and that a rational function with a 
primitive polynomial as the denominator necessarily 
corresponds to a period 2mn-1 PN sequence. 

2. By (14) and (15) (with d=ej), each y(t;ej) or y(x;ej) is 
clearly identified with the j-th component of the following 
vector: 

[ ]TT
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which can always be designed such that the components of s1(x) 
are non-consecutive. The rest of the proposition can be proved 
by Theorem 1.1 and the properties of PN sequences generated 
via the same primitive polynomial [1]-[3].  The fact that the 
sequences 0)};({ ≠ddty  are all distinct follows since, for any 
nonzero masking vector d, y(t;d) denotes a nontrivial linear 
combination of a basis (i.e., the validity follows from uniqueness 
of representation involving a basis [9]).                   � 

Notice that Theorem 1 states that the sequences in the  
2DSRS’ mn memory elements—as represented by the 
                                                               

12) For example, by (1) and (6), [ ]Tm tstst )()...()( 11
11 ≡s  or, alternatively by (4), 

m
jjty 1)};({ =e . 
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generally non-consecutive mn
jjty 1)};({ =e  of Theorem 1.2—

can be used to generate any offset/shifted PN code of 
0)};({ ≠ddty  of Theorem 1.2 via suitable linear combination 

masking, which is a necessary feature in the current IS-95x 
implementations of CDMA [2]; alternatively, the mn  
sequences in the memory elements can be used directly in 
parallel towards multimedia (e.g., real-time video) scrambling 
applications [7]. 

In vector space-theoretic terms, the importance of Theorem 1 
is that the span of the sequences directly produced in the 
individual registers is the complete mn-dimensional subspace 
consisting of all 2mn sequences (the complete set of 2mn-1 offset 
PN sequences plus the zero sequence). 

IV. Illustrative Design Examples 

Designing the 2DSRS corresponds to specifying the 
connection architecture/configuration and the initial conditions 
which, in turn, correspond to the selection of 

),0(and),,...,,,( 1 sdCC nnm            (18) 

respectively. The 2DSRS design can be made under different 
design criteria (e.g., specifying particular PN sequences in the 
registers). 

If we confine the design to a simple 2×2 (m=2, n=2) 2DSRS 
in this section (see Fig. 2), by Observation 1 and (1) through (5), 
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In all of our designs below, the 4-dimensional masking 
vector can be chosen arbitrarily [1]-[3], of course, to obtain any 
offset of the underlying length (2mn-1=24-1=15) PN code as 
follows. 
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However, we initially choose d  implicitly to be the standard 
basis of (16) to determine the hardware connection 
configuration via considering the sequences as generated in the 
individual registers. 

For the 2DSRS to generate PN sequences of period 2mn-
1=24-1=15 in each of the mn=4 registers, by Theorems 1.1  

 

Fig. 2. 2DSRS for m=n=2 with primitive polynomials (a) 
1+x+x 4  and (b) 1+x 3 +x 4 .  
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and 1.2, it suffices to choose |F(x)| to be a primitive 
polynomial of degree mn=4. This means that 

 

42
12

2
21

2
22

2
11

31
12

2
21

2
12

1
21

1
22

2
11

2
22

1
11

21
12

1
21

2
22

1
22

1
11

2
11

1
22

1
11

)(

)(

)(

)(1)(

xcccc

xcccccccc

xcccccc

xccx

++

++++

++++

++=F

      (21) 

has to be either 1+x+x4 or 1+x3+x4; this constraint can be used 
to determine13) C1 and C2 of (18), which quantify the 2DSRS 
connection architecture. 

By Theorem 1, the generating function of PN sequences in 
the leftmost VAR of (6), s1(x), can be obtained as a solution to 
(7) with the following: 

1. F(x) of (8) as determined from above and 
2. g(x) of (9) as determined14) via suitable nonzero initial 

values in the registers as represented by s(0) of (19); for 
demonstrative purposes (for our examples), it suffices to let 
s(0)=[1  0  0  0]T. 

                                                               
13) Equation (21) has many solutions and there is a certain amount of flexibility in the 

design of connection matrices, C1 and C2. 
14) Once the connection matrices C1 and C2 are determined via the constraint on |F(x)| 

being a primitive polynomial (as above), g(x), by (9), can be determined from the choice of s(0) 
so as to make the components of s1(x) be distinct (proper) rational functions—the choice of 
s(0) that fulfills this criterion is generally not unique. 
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Table 1. Some example generations of PN Codes for a 2DSRS
(m=n=2). 
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  Having determined s1(x) as above—by Theorem 1.2—with 
a suitable choice of the masking connection as represented by 
d of (20), the generating function y(x;d) of (14) and (15) for the 
output PN sequence y(t;d)=dTs(t) can be designed to be any 
arbitrary offset of the underlying PN code. 

The solutions and the approaches to solutions, as exemplified 
in this section—summarized in Table 1 and illustrated in Figs. 
2(a) and 2(b)—attest to the possible flexibility in the selection 
of mn PN codes. 

V. Conclusion 

In this paper, we have introduced and analyzed a new 
compact 2-D structure for directly generating non-consecutive 

PN codes of lengths 2mn-1; with the 2-D architecture, it was 
shown in Theorem 1 that once properly designed15) as dictated 
by IS-95x and scrambling applications, we can get all shifted 
PN sequences as with the 1 -D structured shift registers.   

The 2DSRS scheme provides for alternative VLSI/firmware 
implementations of PN generators. With respect to the number 
of memory elements and connections needed, the 
implementation costs between the proposed 2-D scheme and 
the conventional 1-D scheme are similar, but the former is 
superior because of its versatility and richness: Whereas the 
traditional SSRG structure [1]-[3] is capable of generating a PN 
basis consisting of a single collection of consecutively-shifted 
PN sequences, the 2DSRS is capable of generating a PN basis 
consisting of multiple collections of consecutively-shifted PN 
sequences; the 2DSRS, because it normally offers multiple 
solutions for a given specification, allows for more flexible 
designs as compared to the 1-D linear feedback shift register 
[1]-[3] designs, which mostly allows for flexibility in the 
choice of the initial values in the registers. 
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