Remarks on Fixed Point Theorems of Non-Lipschitzian Self-mappings

Tae-Hwa Kim and Byung-Ik Jeon
Division of Mathematical Sciences, Pukyong National University, Pusan 608-737, Korea
e-mail: taehwa@pknu.ac.kr

Abstract. In 1994, Lim-Xu asked whether the Maluta’s constant $D(X) < 1$ implies the fixed point property for asymptotically nonexpansive mappings and gave a partial solution for this question under an additional assumption for T, i.e., weakly asymptotic regularity of T. In this paper, we shall prove that the result due to Lim-Xu is also satisfied for more general non-Lipschitzian mappings in reflexive Banach spaces with weak uniform normal structure. Some applications of this result are also added.

1. Introduction

Let C be a nonempty subset of a real Banach space X and let \mathbb{N} be the set of natural numbers. Let $T : C \to C$ be a mapping. T is said to be Lipschitzian if for each $n \in \mathbb{N}$, there exists a real number k_n such that

$$\|T^n x - T^n y\| \leq k_n \|x - y\|, \quad x, y \in C.$$

In particular, T is said to be asymptotically nonexpansive [8] if $\lim_{n \to \infty} k_n = 1$, and it is said to be nonexpansive if $k_n = 1$ for all $n \in \mathbb{N}$. A set K satisfying $T(K) \subset K$ is said to be invariant under T or T-invariant. Let K be a nonempty subset of C. For each $x \in K$, we set

$$c_n(x; K) = \sup_{y \in K} (\|T^n x - T^n y\| - \|x - y\|) \lor 0.$$

We say that T is of partly asymptotically nonexpansive type if there exists a nonempty bounded closed convex and T-invariant subset K of C such that $c_n(x; K) \to 0$ for each $x \in K$. Recall that if $c_n(x) := c_n(x; C) \to 0$ for each $x \in C$, then T is said to be of asymptotically nonexpansive type (see [16]). A point $x \in C$ is a fixed point of T provided $Tx = x$. Denote by $Fix(T)$ the set of fixed points of T; that is, $Fix(T) = \{x \in C : Tx = x\}$.

Received April 20, 2004.
2000 Mathematics Subject Classification: 47H09, 65J15.
Key words and phrases: fixed points, asymptotically nonexpansive mappings, mappings of partly asymptotically nonexpansive type, weakly asymptotically regular, weak uniform normal structure.
In 1965, Kirk [15] proved that if C is a weakly compact convex subset of a Banach space with normal structure, then every nonexpansive self-mapping T of C has a fixed point, where a nonempty convex subset C of a normed linear space is said to have normal structure if each bounded convex subset K of C consisting of more than one point contains a nondiametral point; that is, a point $z \in K$ such that $\sup\{\|z - x\| : x \in K\} < \text{diam}(K)$. Seven years later, in 1972, Goebel-Kirk [8] proved that if the space X is assumed to be uniformly convex, then every asymptotically nonexpansive self-mapping T of C has a fixed point. This was immediately extended to mappings of asymptotically nonexpansive type in a space with its characteristic of convexity, $\epsilon_o(X) < 1$, by Kirk [16] in 1974. More recently these results have been extended to wider classes of spaces, see for example [4], [6], [7], [14], [19], [18], [22]. In particular, Lim-Xu [19] and Kim-Xu [14] have demonstrated the existence of fixed points for asymptotically nonexpansive mappings in Banach spaces with uniform normal structure, see also [6] for some related results. Very recently, the result due to Kim-Xu [14] was extended to mappings of asymptotically nonexpansive type by Li-Sims [17] and Kim [10] independently.

On the other hand, fixed point theorems due to Lim-Xu [19] for asymptotically nonexpansive mappings defined on a weakly compact convex subset C in a Banach space X with either a weakly continuous duality mapping or for which $D(X) < 1$ having an additional condition, i.e., weak asymptotic regularity on C for T, where $D(X)$ is Maluta’s constant (see [20]), were carried over continuous mappings of asymptotically nonexpansive type by Kim-Kim [13].

In this paper, we modify some results in [13] and carry over these to a wider class of continuous mappings of partly asymptotically nonexpansive type in a Banach space with weak uniform normal structure (see Theorem 3.2). Some applications and examples of non-Lipschitzian mappings of partly asymptotically nonexpansive type which are not of asymptotically nonexpansive type are also added.

2. Preliminaries

Let X be a real Banach space. First, let us introduce normal structure coefficient of X introduced by Bynum [5]. For $A \subset X$, $\text{diam}(A)$ and $r_A(A)$ denote the diameter and the self-Chebyshev radius of A, respectively, i.e.,

$$
\text{diam}(A) = \sup_{x,y \in A} \|x - y\|,
$$

$$
\quad r_A(A) = \inf_{x \in A} (\sup_{y \in A} \|x - y\|)
$$

Recall that X has uniform normal structure (simply UNS) if $N(X) > 1$, where

$$
N(X) = \inf \left\{ \frac{\text{diam}(A)}{r_A(A)} : A \subset X \text{ bounded closed convex with } \text{diam}(A) > 0 \right\}.
$$

Obviously, if $N(X) > 1$, then X has normal structure.
Recall that if X is a non-Schur Banach space, then the weakly convergent sequence coefficient of X, denoted by $WCS(X)$, is defined by

$$WCS(X) = \sup \{ M > 0 : \text{for each weakly convergent sequence } \{x_n\}, $$

$$\exists y \in \overline{co}(\{x_n\}) \text{ such that } M \cdot \limsup_{n \to \infty} \|x_n - y\| \leq A(\{x_n\}) \},$$

where $\overline{co}(K)$ denotes the closed convex hull of a set K and $A(\{x_n\})$ denotes the asymptotic diameter of $\{x_n\}$, i.e.,

$$A(\{x_n\}) = \lim_{n \to \infty} \sup \{\|x_i - x_j\| : i, j \geq n\}.$$

It is easy to give a sharp expression $WCS(X)$ as follows;

$$WCS(X) = \sup \{ M : x_n \rightharpoonup u \Rightarrow M \cdot \limsup_{n \to \infty} \|x_n - u\| \leq D(\{x_n\}) \},$$

where $D(\{x_n\}) := \limsup_{n \to \infty} \limsup_{n \to \infty} \|x_n - x_m\|$ and “\rightharpoonup” means the weak convergence. For more details, see [5] and [12].

Note that if X is reflexive, then $1 \leq N(X) \leq BS(X) \leq WCS(X) \leq 2$ (cf., [5]), where $BS(X)$ means the bounded sequence coefficient of X, i.e.,

$$BS(X) = \sup \{ M : \text{for any bounded sequence } \{x_n\} \text{ in } X, $$

$$\exists y \in \overline{co}(\{x_n\}) \text{ such that } M \cdot \limsup_{n \to \infty} \|x_n - y\| \leq A(\{x_n\}) \}.$$

While $N(X)$ and $BS(X)$ can be defined in every Banach space, $WCS(X)$ is well defined only in infinite dimensional reflexive spaces, where, by Eberlein-Šmulian theorem, we can assure the existence of weakly convergent sequences which do not converge.

The coefficient $WCS(X)$ plays important roles in fixed point theory. A space X such that $WCS(X) > 1$ is said to have weak uniform normal structure. It is well-known [5] that if $WCS(X) > 1$, then X has weak normal structure; that is, any weakly compact convex subset C of X with $\text{diam}(C) > 0$ has a nondiametral point.

Let X be a Banach space. Recall that Maluta’s constant $D(X)$ [20] of X is defined by

$$D(X) = \sup \left\{ \limsup_{n \to \infty} d(x_{n+1}, \overline{co}(\{x_1, x_2, \ldots, x_n\})) / \text{diam}(\{x_n\}) \right\},$$

where the supremum is taken over all bounded nonconstant sequences $\{x_n\}$ in X.

We remark the following properties for Maluta’s constant given in [20].

Lemma 2.1. Let X be a Banach space. Then

(a) $D(X) \leq N(X) := 1/N(X)$,

(b) $D(X) = \sup \{ D(Y) : Y \subset X \text{ separable} \}$,

(c) $D(X) = 0$ if and only if X is finite-dimensional.
(d) If X is reflexive, then $D(X) \leq 1/WCS(X)$.

(e) If $D(X) < 1$, then the Banach space X is reflexive and has normal structure.

Remark 2.1. (i) The property (a) says that if X has uniform normal structure, then $D(X) < 1$. However, the converse does not hold (see Example 5.1 and Corollary 5.2 in [20]).

(ii) In view of (d), Maluta asked whether $D(X) = 1/WCS(X)$ holds true for every infinite dimensional reflexive space X. In 1985, Amir [2] gave a partial solution for this question. In other words, the converse inequality $D(X) \geq 1/WCS(X)$ holds if X satisfies Opial’s property, i.e., for any sequence $\{x_n\}$ converging weakly to x, there holds the inequality

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|, \quad y (\neq x) \in X.$$

Five years later, this question was completely solved by Prus [21].

(iii) The converse of (e) also does not hold (see Example 4.1 in [20], $X = (\sum \oplus \ell_n)_2$ is reflexive and has normal structure although $D(X) = 1$).

Note that, by (e) of Lemma 2.1, if $D(X) < 1$, X has normal structure and hence the fixed point property for nonexpansive mappings; that is, for every weakly compact convex subset C of X, every nonexpansive map $T : C \to C$ has a fixed point. However, it is still open whether $D(X) < 1$ implies the fixed point property for asymptotically nonexpansive mappings. In 1994, Lim-Xu [19] gave a partial answer for this question as follows:

Theorem LX [19]. Suppose that X is a Banach space such that $D(X) < 1$, that C is a closed bounded convex subset of X, and that $T : C \to C$ is an asymptotically nonexpansive mapping. Suppose, in addition, that T is weakly asymptotically regular on C, i.e., $T^{n+1}x - T^n x \to 0$ for all $x \in C$. Then T has a fixed point.

Immediately, Theorem LX was extended to all mappings of asymptotically nonexpansive type by Kim-Kim (see Corollary 3.3 in [13]). In fact, under the assumption of weakly asymptotic regularity of T, the conditions for X and T can be weakened, in other words, Theorem LX can be extended to mappings of partly asymptotically nonexpansive type with $WCS(X) > 1$. Finally we need the following two well known properties for ultrafilters (for example, see [1]).

Lemma 2.2. Let X be a Hausdorff topological linear space and let \mathcal{U} be an ultrafilter on a set I. Then, the following properties hold.

(i) if $\{x_i\}_{i \in I}$ and $\{y_i\}_{i \in I}$ are two subsets of X and $\lim_{\mathcal{U}} x_i = x$ and $\lim_{\mathcal{U}} y_i = y$ both exist, then $\lim_{\mathcal{U}} (x_i + y_i) = x + y$ and $\lim_{\mathcal{U}} (\alpha x_i) = \alpha x$ for any scalar α.

(ii) K is a compact subset of X if and only if any set $\{x_i\}_{i \in I} \subset K$ is convergent over any ultrafilter \mathcal{U} on I.

3. Fixed point theorems

Let C be a nonempty subset of a Banach space X, and let $T : C \to C$ be
a mapping. Suppose there exists a nonempty subset K of C and the weak limit $w\text{-}\lim_{\mathcal{U}} T^nx$ exists in K for each $x \in K$, where \mathcal{U} is a free ultrafilter on \mathbb{N}. We then can define a mapping $S : K \to K$ by

$$Sx = w\text{-}\lim_{\mathcal{U}} T^nx, \quad x \in K. \quad (1)$$

Note first that if K is weakly compact and T-invariant, by (ii) of Lemma 2.2, the weak limit $w\text{-}\lim_{\mathcal{U}} T^nx$ always exists in K for each $x \in K$. Furthermore, we can see that $Fix(T) \cap K \subset Fix(S)$. What are conditions on X and T for which the converse inclusion remains true? Our purpose is to find some conditions on X and T to answer the above question.

First, we exhibit the following easy lemma for our argument.

Lemma 3.1. Let C be a nonempty subset of a reflexive Banach space X. If $T : C \to C$ is a continuous mapping of partly asymptotically nonexpansive type, then there exist a nonempty weakly compact convex and T-invariant subset K of C such that $c_n(x; K) \to 0$ for each $x \in K$, and a nonexpansive mapping $S : K \to K$.

Proof. Since T is of partly asymptotically nonexpansive type and X is reflexive, there exists a nonempty weakly compact convex and T-invariant subset K of C such that $c_n(x; K) \to 0$ for each $x \in K$. Now defining $S : K \to K$ as in (1), S is nonexpansive. In fact, for $x, y \in K$, $Sx = w\text{-}\lim_{\mathcal{U}} T^nx$ and $Sy = w\text{-}\lim_{\mathcal{U}} T^ny$. By (i) of Lemma 2.2, we have $Sx - Sy = w\text{-}\lim_{\mathcal{U}} (T^nx - T^ny)$. Then there exists a subsequence $\{n_k\}$ of $\{n\}$ such that $T^{n_k}x - T^{n_k}y \to Sx - Sy$ as $k \to \infty$. Since the norm $\| \cdot \|$ is weakly lower semicontinuous and $c_n(x; K) \to 0$ as $n \to \infty$ for each $x \in K$, we have

$$\|Sx - Sy\| \leq \liminf_{k \to \infty} \|T^{n_k}x - T^{n_k}y\|$$

$$\leq \limsup_{k \to \infty} (\|T^{n_k}x - T^{n_k}y\| - \|x - y\| + \|x - y\|$$

$$\leq \lim_{k \to \infty} c_{n_k}(x; K) + \|x - y\| = \|x - y\|$$

for all $x, y \in K$. \hfill \Box

Now we will present a partial answer of the above question; that is, a sufficient condition for $Fix(S) \subset Fix(T) \cap K$, with a slight modification of the proof in Lemma 3.1 of [13]. Here we shall give the detailed proof for convenience sake.

Theorem 3.2. Let C be a nonempty subset of a reflexive Banach space X with $WCS(X) > 1$. If $T : C \to C$ is a continuous mapping of partly asymptotically nonexpansive type and weakly asymptotically regular on C, then there exist a nonempty weakly compact convex and T-invariant subset K of C and a nonexpansive mapping $S : K \to K$ such that $Fix(T) \cap K = Fix(S) \neq \emptyset$.

Proof. Let K and $S : K \to K$ be as in Lemma 3.1. Clearly, $Fix(S) \neq \emptyset$ by Kirk [15]. Now to complete the proof, it suffices to show that $Fix(S) \subset Fix(T) \cap K$.

Remarks on Fixed Point Theorems

437
To this end, let \(x \in \text{Fix}(S) \); that is, \(w \)-\(\lim \)\(T^nx = x \in K \). Then there exists a subsequence \(\{T^{n_k}x\} \) of the sequence \(\{T^n x\} \) in \(K \) such that \(T^{n_k}x \to x \) as \(k \to \infty \). By the well known property of \(WCS(X) \),

\[
\limsup_{k \to \infty} \|T^{n_k}x - x\| \leq \frac{1}{WCS(X)} D(\{T^{n_k}x\}). \tag{2}
\]

By weakly asymptotic regularity of \(T \), it follows that \(T^{n_k+m}x \to x \) as \(k \to \infty \) for any \(m \geq 0 \). On the other hand, for each \(i, j \in \mathbb{N} \) with \(i > j \), the weak lower semicontinuity of the norm \(\| \cdot \| \) immediately yields that

\[
\|T^{n_j}x - T^{n_i}x\| \\
\leq (\|T^{n_j}x - T^{n_j}(T^{n_i-x_j}x)\| - \|x - T^{n_i-x_j}x\|) + \|x - T^{n_i-x_j}x\| \\
\leq c_{n_j}(x; K) + \|x - T^{n_i-x_j}x\| \quad (T^{n_k+m}x \to x \text{ as } k \to \infty, \text{ with } m = n_i - n_j) \\
\leq c_{n_j}(x; K) + \liminf_{k \to \infty} \|T^{n_k+m}x - T^{n_i-x_j}x\| \\
\leq c_{n_j}(x; K) + c_{n_i-x_j}(x; K) + \limsup_{k \to \infty} \|x - T^{n_k}x\|.
\]

Taking \(\limsup_{k \to \infty} \) first and next \(\limsup_{j \to \infty} \) on both sides, since \(c_n(x; K) \to 0 \) for each \(x \in K \), this yields

\[
D(\{T^{n_k}x\}) \leq \limsup_{k \to \infty} \|x - T^{n_k}x\|,
\]

and this together with (2) gives \((WCS(X) - 1) \cdot \limsup_{k \to \infty} \|T^{n_k}x - x\| \leq 0 \), which in turn implies that \(x = \lim_{k \to \infty} T^{n_k}x \). By the continuity and weak asymptotic regularity of \(T \), we have \(Tx = x \), i.e., \(x \in \text{Fix}(T) \). \(\square \)

Remark 3.1. (i) Note that if \(C \) is weakly compact convex, the reflexivity of \(X \) can be removed in Theorem 3.2.

(ii) Following (ii) of Remark 2.1, \(D(X) = 1/WCS(X) \) for every infinite dimensional reflexive space \(X \). Therefore, the assumption in Theorem 3.2 which \(X \) is a reflexive Banach space with \(WCS(X) > 1 \) can be replaced by \(D(X) < 1 \).

(iii) As a direct consequence of the proof of Theorem 3.2, we notice that, under the same assumptions of \(C \), \(X \) and \(T \), if \(\{T^{n_k}x\} \) is a subsequence of \(\{T^n x\} \) converging weakly to \(x \in K \), then \(\lim_{k \to \infty} T^{n_k}x = x \). However, if the whole sequence \(\{T^n x\} \) converges weakly, the weakly asymptotic regularity on \(C \) for \(T \) is abundant.

Lemma 3.3. Let \(C \) be a nonempty subset of a reflexive Banach space \(X \) with \(WCS(X) > 1 \). If \(T : C \to C \) is a continuous mapping of partly asymptotically nonexpansive type, then \(\lim_{n \to \infty} T^n x = x \in K \Rightarrow \lim_{n \to \infty} T^n x = x \in \text{Fix}(T) \).

With the similar method of the proof as in Theorem 3.2, we observe the following

Theorem 3.4. Let \(C \) be a nonempty bounded subset of a Banach space \(X \) with
\[D(X) < 1. \] Let \(T : C \to C \) be a continuous mapping of asymptotically nonexpansive type which is weakly asymptotically regular on \(C \). Suppose there exists a nonempty closed convex subset \(K \) of \(C \) with the following property
\[
x \in K \implies \omega_{w}(x) \subseteq K, \tag{\omega}
\]
where \(\omega_{w}(x) \) is the weak \(\omega \)-limit set of \(T \) at \(x \); namely, \(\omega_{w}(x) = \{ y \in X : y = \text{w-lim}_{k \to \infty} T^{n_{k}}x \text{ for some } n_{k} \uparrow \infty \} \). Then there exists a nonexpansive mapping \(S : K \to K \) such that \(\text{Fix}(T) \cap K = \text{Fix}(S) \neq \emptyset \).

Proof. Since \(X \) is reflexive, \(K \) is weakly compact and \(WSC(X) > 1 \). Since the sequence \(\{ T^{n}x \} \) belongs to \(C \), and \(\text{co}(C) \) is weakly compact, the weak limit \(\text{w-lim}_{n} T^{n}x \) always exists in \(\text{co}(C) \) for each \(x \in K \) by (ii) of Lemma 2.2. Define \(Sx = \text{w-lim}_{n} T^{n}x \) for each \(x \in K \). Then, there exists a subsequence \(\{ n_{k} \} \) of \(n \) such that \(T^{n_{k}}x \to Sx \) as \(k \to \infty \). By property of \((\omega) \), it follows that \(Sx \in \omega_{w}(x) \subseteq K \). Therefore, \(S : K \to K \) is well defined, and also nonexpansive. Thus, repeating the method of proof in Theorem 3.2, we can easily obtain the conclusion. \(\square \)

It is clear that if \(C \) is a nonempty bounded subset of a Banach space \(X \), and if \(T : C \to C \) is an asymptotically nonexpansive mapping with its Lipschitz constant of \(T^{n} \), \(k_{n} \geq 1 \), then \(T \) is a uniformly Lipschitzian mapping of asymptotically nonexpansive type. Therefore, we have the following easy result.

Corollary 3.5. Let \(C \) be a nonempty bounded subset of a Banach space \(X \) with \(D(X) < 1 \). Let \(T : C \to C \) be an asymptotically nonexpansive mapping which is weakly asymptotically regular on \(C \). Suppose there exists a nonempty closed convex subset \(K \) of \(C \) with the property \((\omega)\). Then there exists a nonexpansive mapping \(S : K \to K \) such that \(\text{Fix}(T) \cap K = \text{Fix}(S) \neq \emptyset \).

Let \(C \) be a weakly compact convex subset of a Banach space \(X \). Consider a family \(\mathcal{F} \) of subsets \(K \) of \(C \) which are nonempty, closed, convex, and satisfy the following property \((\omega)\). The weak compactness of \(C \) now allows one to use Zorn’s lemma to obtain a minimal element (say) \(K \in \mathcal{F} \). Therefore, as a direct consequence of Theorem 3.2 or 3.4, we have the following result due to Kim-Kim [13].

Corollary 3.6. Let \(C \) be a nonempty weakly compact convex subset of a Banach space \(X \) with \(\text{WCS}(X) > 1 \). If \(T : C \to C \) is a continuous mapping of asymptotically nonexpansive type and weakly asymptotically regular on \(C \), then \(\text{Fix}(T) \) is a nonempty nonexpansive retract of \(C \).

Proof. Note first that \(T \) is of partly asymptotically nonexpansive type with \(K = C \). Since \(C \) is weakly compact and convex, in view of (i) of Remark 3.1, we can apply for Theorem 3.2 or 3.4, and hence \(\text{Fix}(T) = \text{Fix}(S) \neq \emptyset \). Since \(S \) is nonexpansive, it follows from [3] that \(\text{Fix}(S) \) is a nonempty nonexpansive retract of \(C \). \(\square \)

Recall that a Banach space \(X \) is said to be uniformly convex in every direction \([9]\) if \(\delta_{x}(\epsilon) > 0 \) for all \(\epsilon > 0 \) and all \(z \in X \) with \(\|z\| = 1 \), where \(\delta_{x}(\cdot) \) means the
The modulus of convexity of X in the direction z, that is,

$$\delta_z(\epsilon) = \{1 - \|x + y\|/2 : \|x\| \leq 1, \|y\| \leq 1, x - y = \epsilon z\}.$$

There is clearly a space X which may be uniformly convex in every direction while failing to be uniformly convex. Obviously, such spaces are always strictly convex.

Theorem 3.7. Suppose that X is a reflexive Banach space which is uniformly convex in every direction and for which $\text{WCS}(X) > 1$ and that C is a nonempty subset of X. Then, if $T : C \to C$ is a continuous mapping of partly asymptotically nonexpansive type, T has a fixed point.

Proof. Use the same argument presented in the proof of Theorem 5 in [19] and Lemma 3.3. \hfill \Box

Finally, we shall give examples of non-Lipschitzian mappings of partly asymptotically nonexpansive type which are not of asymptotically nonexpansive type, inspired by the example 4.3 and 4.4 in [11]. These examples also satisfy all assumptions of Theorem 3.2.

Example A. Let $X = C = \mathbb{R}$, the set of real numbers, and let $|k| < 1$. For each $x \in C$, we define

$$Tx = \begin{cases}
kx \sin \frac{1}{2^n}, & x \neq 0, |x| \leq 1/\pi; \\
0, & x = 0; \\
\pi|x| - 1, & |x| > 1/\pi.\end{cases}$$

Then, clearly $c_n(1) = c_n(1; C) \geq T^n 1 - 1 \to \infty$, and so T is not of asymptotically nonexpansive type. Note further that $c_n(x) = c_n(x, C) \to \infty$ for all fixed $x \in C$. But if we take $K = [-1/\pi, 1/\pi]$, then K is T-invariant and also T is of partly asymptotically nonexpansive type. Indeed, it suffices to show that $c_n(x; K) \to 0$ for each $x \in K$. For fixed $x \in K$ and $n \in \mathbb{N}$, set

$$H_n(y) = |T^n x - T^n y| - |x - y|, \quad y \in K.$$

Then $H_n(\cdot)$ is continuous on K, and so it achieves its maximum in K, i.e., there exists a $y_n \in K$ such that $c_n(x; K) = H_n(y_n) \vee 0$. Since $T^n z \to 0$ uniformly on K, we have $c_n(x; K) \to 0$ for each $x \in K$.

Example B. Let $X = \mathbb{R}$ and $C = (-\infty, 1]$. First consider a continuous non-Lipschitzian mapping $f : [0, 1/2] \to [0, 1/4]$ defined by

$$f(x) = \begin{cases}
n(2n+1)x \frac{1}{2n+1}, & 0 \leq x \leq \frac{1}{2n}, n \geq 1; \\
(n+1)(2n+1)x \frac{1}{n+2}, & \frac{1}{2(n+1)} \leq x \leq \frac{1}{2n+1}, n \geq 1; \\
0, & x = 0.
\end{cases}$$

Then $\|f(x) - f(y)\| \leq \epsilon \|x - y\|/2$, and so f is asymptotically nonexpansive. But if we take $x = (1/2)^n$ and $y = (1/2)^{n+1}$, then $f(x) - f(y) = \epsilon (1/2)^{n+1}$, and so f is not Lipschitzian.
Note first that for each \(n \in \mathbb{N} \), the graph of \(f \) on each subinterval \([1/2(n+1), 1/2n]\) consists of two segments connecting three points \((1/2(n+1), 1/2(n+2)), (1/2n+1, 0)\) and \((1/2n, 1/2(n+1))\). For each \(x \in C = (-\infty, 1] \), we now define

\[
T_x = \begin{cases} \frac{x}{1-2x}, & \text{if } x \leq -\frac{1}{2}; \\ f(x), & \text{if } x \in [0, 1/2]; \\ -f(-x), & \text{if } x \in [-1/2, 0]; \\ x^2, & \text{if } \frac{1}{2} \leq x \leq 1. \end{cases}
\]

Obviously, \(|T^n z| \leq \frac{1}{2(n+1)}\) for \(|z| \leq \frac{1}{2} \), and so \(T^n z \to 0\) uniformly on \([-1/2, 1/2]\).

Also, since \(|Tz| \leq 1/2\) for \(z \leq -1/2\), we also have \(T^n z \to 0\) uniformly on \((-\infty, -1/2]\). We thus obtain \(T^n z \to 0\) uniformly on \((-\infty, 1/2]\). It is obvious that \(T\) is not of asymptotically nonexpansive type because \(c_n(1) = 1\) for each \(n\).

However, if we take \(K := [-1/2, 1/2]\), it is easy to see that \(K\) is \(T\)-invariant and \(T\) is of partly asymptotically nonexpansive type, i.e., \(c_n(x; K) \to 0\) for each \(x \in K\).

Remark 3.2. If we take \(K := [-1/2, 0]\) in Example B, for this \(T\)-invariant closed interval \(K\) of \(C\), we can further prove that \(c_n(x) \to 0\) for each \(x \in K\). Indeed, for \(x \in K\), we set

\[
c_n(x) = \sup_{y \in C}(|T^n x - T^n y| - |x - y|) \vee 0
\]

\[
= \sup_{y \in (-\infty, 1/2]}(|T^n x - T^n y| - |x - y|) \vee \sup_{y \in [1/2, 1]}(|T^n x - T^n y| - |x - y|) \vee 0
\]

\[
:= A_n(x) \vee B_n(x) \vee 0.
\]

Since \(T^n z \to 0\) uniformly on \((-\infty, 1/2]\), \(A_n(x) \to 0\) as \(n \to \infty\). Now it suffices to show that \(\limsup_{n \to \infty} B_n(x) \leq 0\). For each \(n \in \mathbb{N}\), there exists \(y_n \in [1/2, 1]\) such that \(B_n(x) = |T^n x - T^n y_n| - |x - y_n|\). If \(y_n = 1\), since \(-\frac{1}{2(n+1)} \leq T^n x \leq 0\), we have \(|T^n x - 1| = 1 - T^n x \leq 1 - x = |x - 1|\) for sufficiently large \(n\), and so \(\limsup_{n \to \infty}(|T^n x - 1| - |x - 1|) \leq 0\). Also if \(y_n \in [1/2, 1]\), we easily have

\[
\limsup_{n \to \infty}(|T^n x - T^n y_n| - |x - y_n|) = -\liminf_{n \to \infty} |x - y_n| \leq 0.
\]

Thus, \(\limsup_{n \to \infty} B_n(x) \leq 0\) is obtained, and therefore \(c_n(x) \to 0\) for each \(x \in K\).

Finally, note that every sequence \(\{T^n x\}\) converges uniformly to \(0 \in Fix(T) \cap K = \{0\}\) for each \(x \in K\).

References

