KYUNGPOOK Math. J. 45(2005), 167-169

Vector Bundles on Curves with Many "spread" Sections

E. BALLICO

Department of Mathematics, University of Trento, 38050 Povo (TN), Italy e-mail: ballico@science.unitn.it

ABSTRACT. Here we introduce and study vector bundles, E, on a smooth projective curve X having many "spread" sections and for which $E^* \otimes \omega_X$ has many "spread" sections. We show that no such bundle exists on X if the gonality of X is too low.

1. Introduction

Here we are interested in vector bundles E on a smooth projective curve X having many "spread" sections and for which $E^* \otimes \omega_X$ has many "spread" sections. The corresponding notion for line bundles (primitive line bundles) was studied in [5] and [6]. Concerning the existence of stable or semistable vector bundles on X with many sections, see [1], [2], [3], [4], [7], [8] and references therein.

Definition 1. Let X be a smooth and connected projective curve and E a vector bundle on X. We will say that E is (1, 0)-primitive if it is spanned, i.e., if it is spanned by its global sections. For any integer $a \ge 2$ we will say that E is (a, 0)-primitive if for every vector bundle F obtained form E making a negative elementary transformations we have $h^0(X, F) = h^0(X, E) - a$, i.e., if and only if it is (a - 1, 0)-primitive and every vector bundle G obtained from E making a - 1 negative elementary transformations is (1, 0)-primitive. For any integer b > 0 we will say that E is (0, b)-primitive if $\omega_X \otimes E^*$ is (b, 0)-primitive. We will say that E is (a, b)-primitive if it is (a, 0)-primitive and (0, b)-primitive.

Definition 2. Let X be a smooth and connected projective curve, E a vector bundle on X and a, b non-negative integers. We will say that E is strongly (a, b)-primitive if for every effective divisors A, B of X with deg(A) = a and deg(B) = b the restriction maps $\rho_{E,A} : H^0(X, E) \to H^0(A, E|A)$ and $\rho_{\omega_X^{\otimes} E^*, B} : H^0(X, \omega_X \otimes E^*) \to$ $H^0(B, \omega_X \otimes E^*|B)$ are surjective. Here if a = 0 (resp. b = 0) we take $A = \emptyset$ (resp. $B = \emptyset$) and by convention we say that $\rho_{E,\emptyset}$ and $\rho_{\omega_X^{\otimes} E^*,\emptyset}$ are always bijective.

Remark 1. By Serre duality and Riemann-Roch E is (0, b) primitive if and only

Received November 14, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 14H60, 14H51.

Key words and phrases: vector bundles on curves, gonality, stable vector bundle, Brill-Noether theory for vector bundles.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

if for every vector bundle M obtained from E making b positive elementary transformations we have $h^0(X, M) = h^0(X, E)$.

Remark 2. A line bundle is (2, 0)-primitive if and only if it is very ample. Hence a hyperellyptic curve has no (2, 1)-primitive and no (1, 2)-primitive line bundle.

Remark 3. A strongly (a, b)-primitive vector bundle is (a, b)-primitive. A line bundle is (a, b)-primitive if and only if it is strongly (a, b)-primitive.

Remark 4. In the definition of strongly (a, b)-primitivity we obtain the same notion if instead of A we take all effective divisors $A' \subset X$ such that $\deg(A') \leq a$ and/or instead of B all effective divisors $B' \subset X$ such that $\deg(B') \leq b$.

We work over an algebraically closed field **K** and prove the following results.

Theorem 1. Fix an integer r > 0 and assume either $\operatorname{char}(\mathbf{K}) = 0$ or $\operatorname{char}(\mathbf{K}) > r$. Let X be a smooth hyperelliptic curve of genus $g \ge 2$ and $R \in \operatorname{Pic}^2(X)$ its hyperelliptic curve. Let E be a rank r strongly (1,1)-primitive vector bundle on X. Then there are integers s > 0, a_i and $b_i > 0$, $1 \le i \le s$, such that $0 \le i \le g - 1$ for all i, $\sum_{i=1}^{s} b_i = r$ and $E \cong \bigoplus_{i=1}^{s} (R^{\otimes a_i})^{\oplus b_i}$. In particular E is stable if and only if r = 1 and E is semistable if and only if there is an integer a such that $0 \le a \le g - 1$ and $E \cong (R^{\otimes a})^{\oplus r}$.

Theorem 2. Fix an integer r > 0 and assume either char(\mathbf{K}) = 0 or char(\mathbf{K}) > r. Let X be a smooth hyperelliptic curve. Then there is no strongly (2,1)-primitive or strongly (1,2)-primitive rank r vector bundle on X.

Theorem 3. Fix an integer r > 0 and assume either char(\mathbf{K}) = 0 or char(\mathbf{K}) > r. Let X be a smooth k-gonal curve of genus $g \ge 2k-3 \ge 3$. Then there is no strongly (k, k)-primitive rank r vector bundle on X.

2. The proofs

Proof of Theorem 1. Since the "if" part is obvious, we only need to prove the "only if" part. Let $\psi : X \to \mathbf{P}^1$ the degree 2 hyperelliptic pencil and $\phi : X \to G(r, m)$, $m := h^0(X, E)$, the morphism associated to the pair $(E, H^0(X, E))$; ϕ is a morphism because E is (1, 0)-primitive, i.e., E is spanned. Since every vector bundle on \mathbf{P}^{*1} is a direct sum of line bundles, it is sufficient to show that ϕ factors through ψ . Fix $P, \ Q \in X$ such that $P \neq Q$ and $R \cong \mathcal{O}_X(P+Q)$. Since we may take as P a general point of X, it is sufficient to prove that $\phi(Q) = \phi(P)$. Assume $\phi(Q) \neq \phi(P)$. Hence there is $m \in H^0(X, E)$ such that $m(P) = 0 \in E|\{P\}$ and $m(Q) \neq 0 \in E|\{Q\}$. Notice that $E^* \otimes \omega_X \cong Hom(E, \omega_X)$. Since $E^* \otimes \omega_X$ is spanned, there is $f \in H^0(X, Hom(E, \omega_X))$ such that $(f \circ m)(Q) \neq 0 \in \omega_X|\{Q\}$. Since m(P) = 0, then $(f \circ m)(P) = 0$ and hence $(f \circ m)(P) \neq (f \circ m)(Q)$. Since either char(\mathbf{K}) = 0 or char(\mathbf{K}) > r, we have $E \otimes E^* \otimes \omega_X \cong \mathrm{ad}(E) \otimes \omega_X \oplus \omega_X$. Hence $\psi(Q) \neq \psi(P)$, contradiction.

Proof of Theorem 2. Let $\psi: X \to \mathbf{P}^1$ the degree 2 hyperelliptic pencil. Since for every integer a with $0 \le a \le g$ the morphism induced by $\mathbb{R}^{\otimes a}$ factors through ψ and $\omega_X \cong \mathbb{R}^{\otimes (g-1)}$, the result follows from Theorem 1. Vector Bundle

Proof of Theorem 3. By assumption there are $P_1, \dots, P_k \in X$, $P_i \neq P_j$ for $i \neq j$, such that $P_1 + \dots + P_k$ is a g_k^1 on X. Set $S := \{P_1, \dots, P_k\}$. Assume the existence of a strongly (k, k)-primitive rank r vector bundle on X. Since either char $(\mathbf{K}) = 0$ or char $(\mathbf{K}) > r$, we have $E \otimes E^* \otimes \omega_X \cong \operatorname{ad}(E) \otimes \omega_X \oplus \omega_X$. Let $\phi_K : X \to \mathbf{P}^{g-1}$ be the canonical map. Since E is strongly (k, 0)-primitive, the restriction map $u : H^0(X, E) \to H^0(S, E|S)$ is surjective. Since E is strongly (0, k)-primitive, the restriction map $v : H^0(X, E^* \otimes \omega_X) \to H^0(S, E^* \otimes \omega_X | S)$ is surjective. Since the tensor product is a right exact functor, the map $u \otimes v : H^0(X, E) \otimes H^0(X, E^* \otimes \omega_X) \to$ $H^0(S, E|S) \otimes H^0(S, E^* \otimes \omega_X | S) \cong H^0(S, E \otimes E^* \otimes \omega_X | S)$ is surjective. Since $u \otimes v$ factors through the map $H^0(X, E) \otimes H^0(X, E^* \otimes \omega_X) \to H^0(X, E \otimes E^* \otimes \omega_X)$, we obtain the surjectivity of the restriction map $\rho : H^0(X, E \otimes E^* \otimes \omega_X) \to$ $H^0(S), E \otimes E^* \otimes \omega_X | S)$). Since either char $(\mathbf{K}) = 0$ or char $(\mathbf{K}) > r$, we have $E \otimes E^* \otimes \omega_X \cong \operatorname{ad}(E) \otimes \omega_X \oplus \omega_X$. Hence we obtain the surjectivity of the restriction map $H^0(X, \omega_X) \to H^0(S, \omega_X | S)$ and hence $\phi_K(S)$ spans a (k-1)-dimensional linear subspace of \mathbf{P}^{g-1} , contradicting the geometric form of Riemann-Roch. \Box

References

- E. Ballico, Brill-Noether theory for vector bundles on projective curves, Math. Proc. Camb. Philos. Soc., 128(1998), 483–499.
- [2] L. Brambila-Paz, I. Grzegorczyk and P. E. Newstead, Geography of Brill-Noether loci for small slopes, J. Agebraic Geom., 6(1997), 645–668.
- [3] L. Brambila-Paz, V. Mercat, P. E. Newstead and F. Ongay, Nonemptyness of Brill-Noether loci, Int. J. Math., 11(6)(2000), 737–760.
- [4] J. Cilleruelo and I. Sols, The Severi bound on sections of rank two semistable vector bundles on a Riemann surface, Ann. Math., 154(2001), 739–758.
- [5] M. Coppens, C. Keem and G. Martens, *Primitive linear series on curves*, Manuscripta Math., 77(1992), 237–264.
- [6] M. Coppens, C. Keem and G. Martens, The primitive length of a general k-gonal curve, Indag. Math., N.S., 5(1994), 145–159.
- [7] H. Lange and P. E. Newstead, On Clifford's theorem for rank-3 bundles, ArXiv:math.AG/0310463.
- [8] V. Mercat, Clifford's theorem and higher rank vector bundles, Int. J. Math., 13(7)(2002), 785–796.