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Abstract. We generalize a continued fraction of Ramanujan by introducing a free pa-

rameter. We give the closed form for the continued fraction. We also consider the finite

form giving nth convergent using partition theory.

1. Introduction

Ramanujan, in his first letter to Hardy [7, p. xxviii] stated the continued frac-
tion

(1) 1 +
x

1 + x2

1+ x3
.

now known as Rogers-Ramanujan continued fraction and gave some identities in-
volving it. Ramanujan continued to write “the above theorem is a particular case
of a theorem on the continued fraction

(2) 1 +
ax

1 + ax2

1+ ax3
.

,

which is a particular case of the continued fraction

(3) 1 +
ax

(1 + bx) + ax2

(1+bx2)+ ax3

(1+bx3)+.

,

which is a particular case of a general theorem on continued fractions”. Andrews
[1, Theorem 6] gave the continued fraction

(4) 1 + bxq +
xq(1 + axq2)

(1 + bxq2) + xq2(1+axq3)
(1+bxq3)+.

and thought this might be the general theorem about which Ramanujan referred.
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In this paper we give a mild generalization of the continued fraction (2), con-
sidered by Hirschhorn [4], by introducing a free parameter and then generate the
generalized continued fraction, giving a closed form for the infinite continued frac-
tion. We then consider the finite form of the generalization and give the closed
form of the sum using two methods. In the first method we consider the expansion

P =
∞∑

n=0

Pnzn+1 and from this get the nth convergent. In the second method we

use partition theory. Later we give an alternate expansion of the nth convergent
using Watson 8ϕ7 transformation.

2. Notations

We shall use the following usual basic hypergeometric notations: For |x| < 1,
(a)0 = 1,

(a)n = (1− a)(1− ax) · · · (1− axn−1) for 1 ≤ n < ∞

(a)∞ = Π∞r=0(1− axr)

[nr ] = (x)n

(x)r(x)n−r

∑
k p(k, n, r)xk = (x)r+n

(x)r(x)n
.

3. The continued fraction

Let

(5) F (a, c, x) = 1 +
(1− 1/c)ax

1 + ax2

1+
(1−1/cx)ax3

1+ ax4
.

=
P (a, c, x)
P (ax, c, x)

.

We shall prove that

(6) P (a, c, x) =
∞∑

n=0

(x)
n2+n

2 (c)n(−a/c)n

(x)n

Proof. We define for non-negative integer i

(7) Fi =
∞∑

n=0

(−axi/λ)n(cxi)n(−λx/c)n

(x)n(−bx)n+i

and

(8) Hi =
∞∑

n=0

(−axi/λ)n(cxi)n(−λx2/c)n

(x)n(−bx)n+i
.
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This gives

Fi −Hi(9)

=
∞∑

n=0

(−axi/λ)n(cxi)n(−λx/c)n

(x)n(−bx)n+i
(1− xn)

= (−λx/c)(1 + axi/λ)(1− cxi)
∞∑

n=0

(−axi+1/λ)n(cxi+1)n(−λx/c)n

(x)n(−bx)n+i+1

= (1− 1/cxi)(λxi+1 + ax2i+1)Fi+1.

Now we transform Fi and Hi by Heine’s fundamental transformation
∞∑

n=0

(α)n(β)nτn

(x)n(γ)n
=

(αβτ/γ)∞
(τ)∞

∞∑
n=0

(γ/α)n(γ/β)n(αβτ/γ)n

(x)n(γ)n
.

Taking α = −axi/λ, β = cxi, τ = −λx/c, γ = −bxi+1, we have

(10) Fi =
(−axi/λ)∞
(−λx/c)∞

∞∑
n=0

(λbx/a)n(−bx/c)n(−axi/b)n

(x)n(−bx)n+i
.

Then taking α = −axi/λ, β = cxi, τ = −λx2/c, γ = −bxi+1, we have

(11) Hi =
(−axi+1/λ)∞
(−λq2/c)∞

∞∑
n=0

(λbx/a)n(−bx/c)n(−axi+1/b)n

(x)n(−bx)n+i
.

From (10) and (11), we get in the same way

(12) Hi − (1 + λx/c)Fi+1 = (bxi+1 + ax2i+2)Hi+1.

Putting λ = 0, b = 0 in (9) and (12), we have

Fi −Hi = (1− 1/cxi)ax2i+1Fi+1,(13)
Hi − Fi+1 = ax2i+2Hi+1.(14)

So

(15)
F0

H0
=

∑∞
n=0

x
n2+n

2 (c)n(−a/c)n

(x)n

∑∞
n=0

x
n2+3n

2 (c)n(−a/c)n

(x)n

= F (a, c, x).

Now we iterate (13) and (14), to get

F0

H0
= 1 +

(1− 1/c)ax
H0
F1

= 1 +
(1− 1/c)ax

1 + ax2
F1
H1

= 1 +
(1− 1/c)ax

1 + ax2

1+
(1−1/cx)ax3

H1
F2

.
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Hence (15) is the closed form of the infinite continued fraction (5).

Let c −→∞ and a = 1 in (15)

∑∞
n=0

xn2

(x)n∑∞
n=0

xn2+n

(x)n

= 1 +
x

1 + x2

1+ x3
1

,

which is the celebrated Roger’s Ramanujan continued fraction. ¤

4. Interesting cases

(i) Taking c = x in (15), we have

1 +
(1− 1/x)ax

1 + ax2

1+
(1−1/x2)ax3

.

=
∑∞

n=0(−1)nanx
n2−n

2

∑∞
n=0(−1)nanx

n2+n
2

.

(ii) Taking c = −x, a = 1 in (15), we have

1 +
(1 + 1/x)x

1 + x2

1+
(1+1/x2)x3

.

=

∑∞
n=0

x
n2−n

2 (−x)n

(x)n

∑∞
n=0

x
n2+n

2 (−x)n

(x)n

=
[(q2; q4)2∞(q4; q4)∞ + (q; q4)∞(q3; q4)∞(q4; q4)∞]

(q; q4)∞(q3; q4)∞(q4; q4)∞
by Slater [8, eq.(8) and eq.(13)]

= 1 +
(q2; q4)2∞

(q; q4)∞(q3; q4)∞
.

(iii) Writing x2 for x and then putting c = −x, a = 1 in (15), we have the
identity due to Ramanujan [5]

1 +
x + x2

1 + x4

1+ x3+x6

1+ x8
.

=
∞∑

n=0

(1− x8n+3)(1− x8n+5)
(1− x8n+1)(1− x8n+7)

.

5. Expression for Pn and Qn

Let

P (z) = 1 +
∞∑

n=0

Pnzn+1 =
∞∑

r=0

(−1)rx
r2+r

2 (cz)r(a/c)r

(z)r+1
, |a/c| < 1 and(16)

Q(z) =
∞∑

n=0

Qnzn =
∞∑

r=0

(−1)rx
r2+3r

2 (cz)r(a/c)r

(z)r+1
, |a/c| < 1.
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Applying Abel’s Lemma

P∞ = lim
n→∞

Pn = lim
z→1−

(1− z)P (z)

=
∞∑

r=0

(−1)rx
r2+r

2 (c)r(a/c)r

(x)r
, |a/c| < 1

which is (6). Similarly

Q∞ =
∞∑

r=0

(−1)rx
r2+3r

2 (c)r(a/c)r

(x)r
, |a/c| < 1.

Explicit expressions for Pn and Qn

To obtain explicit expressions for Pn and Qn, we shall use (16). We have

P∞ = 1 +
∞∑

n=0

Pnzn+1 =
∞∑

r=0

(−1)rx
r2+r

2 (cz)r(az/c)r

(z)r+1

=
∞∑

r=0

(−1)rx
r2+r

2 (a/c)rzr
r∑

s=0

(−1)sx(s
2)(cz)s[rs]

∞∑
t=0

zt[t+r
r ].

Hence

Pn(a, b, c, x) =
∑

r+s+t=n+1

(−1)rx
r2+r

2 (a/c)r(−1)scsx
s2−s

2 [rs][
r+t
r ](17)

=
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)scsx
s2−s

2 [rs][
n−s+1
r ].

Similarly

(18) Qn(a, b, c, x) =
n∑

r=0

(−1)rx
r2+3r

2 (a/c)r

min(r,n−r)∑
s=0

(−1)scsx
s2−s

2 [rs][
n−s
r ].

(17) and (18) are the explicit expression for Pn and Qn.

6. Explicit expression for Pn and Qn using partitions

We shall now find explicit expressions for Pn and Qn by using a result in par-
titions.

P∞ = 1 +
∞∑

n=0

Pnzn+1 =
∞∑

r=0

(−1)rx
r2+r

2 (cz)r(az/c)r

(z)r+1
.
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Therefore

Pn(a, b, c, x) =
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)scs

∑

0<α1···αs≤r

x(α1−1)+(α2−1)+···+(αs−1)

×
∑

β0+β1+β2+···+βs<n−r−s+1

1β0xβ1 · · ·xβr .

Putting vi = αi − ti, ti = i, i = 1, 2, · · · , s.

Pn(a, b, c, x) =
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)scsx
s2−s

2

∑

0<v1···<vs≤r−s

xv1+v2+···+vs

×
∑

β1+···+βr<n−r−s+1

xβ1+···+βr .

Now using a result on partition [5, Art. 241], viz.,

∑

k

p(k, r, n)xk =
(x)r+n

(x)r(x)n
,

where p(k, r, n) is the number of partition of k into at most r parts not exceeding
n.

Hence

Pn(a, b, c, x)

=
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)sx
s2−s

2 cs
∑

k

p(k, s, r − s)xk

×
∑

k

p(k, n− r − s + 1, r)xk

=
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)sx
s2−s

2 cs (x)r

(x)s(x)r−s

(x)n−s+1

(x)r(x)n−r−s+1

=
n+1∑
r=0

(−1)rx
r2+r

2 (a/c)r

min(r,n−r+1)∑
s=0

(−1)sx
s2−s

2 cs[rs][
n−s+1
r ].

Similarly for Qn(a, b, c, x).

7. Alternative forms for Pn and Qn
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We shall show that

P (a, b, c, x) =
(ax/c)∞
(ax)∞

∞∑
r=0

(1− ax2r)
(1− axr)

(ax)r(c)r(a2/c)rx2r2

(x)r(ax/c)r
and(19)

Q(a, b, c, x) =
(ax2/c)∞
(ax2)∞

∞∑
r=0

(1− ax2r+1)
(1− axr+1)

(ax2)r(c)r(a2x2/c)rx2r2

(x)r(ax2/c)r
.(20)

Proof. We shall use Watson’s theorem [3] to prove (19) and (20). Watson’s theorem
is

4φ3

[
ax/BC, D,E, x−N

ax/B, Ax/C, DEx−N/A
;x

]
(21)

=
(Ax/D)N (Ax/E)N

(Ax)N (Ax/DE)N

8φ7

[
A,
√

Ax,−√Ax,B, C,D, E, x−N√
A,−√A,Ax/B, Ax/C, Ax/D, Ax/E,Ax/x−N ;;a

2x2/BCDEx−N

]
.

Making B, C, D, N →∞ and putting A = a, E = C in (21), we have

P =
∞∑

r=0

x
r2+r

2 (c)r(a/c)r

(x)r

=
(ax/c)∞
(ax)∞

∞∑
r=0

(a)r(
√

ax)r(−
√

ax)r(c)r

(a)r(−a)r(ax/c)r

=
(ax/c)∞
(ax)∞

∞∑
r=0

(1− ax2r)
(1− axr)

(c)r(ax)r(a2/c)rx2r2

(x)r(ax/c)r
.

Similarly making B, C, D, N →∞ and putting A = ax, E = C in (21), we have

Q =
(ax2/c)∞
(ax2)∞

∞∑
r=0

(1− ax2r+1)
(1− axr+1)

(c)r(ax2)r(a2x2/c)rx2r2

(x)r(ax2/c)r
,

which proves (15) and (16). ¤
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