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Abstract. In this paper a nonlinear alternative of Leray-Schauder type is proved in a
Banach algebra involving three operators and it is further applied to a functional nonlinear
integral equation of mixed type
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v(t, s) g(s, x(η(s))) ds
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for proving the existence results in Banach algebras under generalized Lipschitz and

Carathéodory conditions.

1. Introduction

The topological fixed point theorems such as the Schauder fixed point principle,
the Leray-Schauder nonlinear alternative and the topological transversality princi-
ple, etc., are useful in the study of nonlinear differential and integral equations for
proving the existence theorems under certain compactness type conditions. An ex-
haustive account of this subject appears in Deimling [3], Dugundji and Granas [11],
Zeidler [16] and the references therein. The existence theorems for nonlinear inte-
gral equations of mixed type are generally obtained by using the hybrid fixed point
theorems of Krasnoselski [13] and Dhage [4], [5]. It has also been proved that the
Leray-Schauder type hybrid fixed point theorems are also very much useful in the
study of nonlinear integral equations of mixed type. Recently Dhage and O’Regan
[7] proved a Leray-Schauder type hybrid fixed point theorem in Banach algebras
and it is further applied to a certain nonlinear integral equation for proving the
existence theorems under Lipschitz and compactness conditions. In a recent paper
[10], the authors proved a similar type of fixed point theorem in a Banach algebra
involving two operators under some weaker conditions than Dhage and Regan [7]
and proved an existence theorem for a certain nonlinear functional integral equa-
tion. Though the main fixed point theorem of Dhage et. al. [10] is correct, the proof
contains some errors and the improvement of this result is one of the motivations
for this paper. In this paper we shall prove a Leray-Schauder type hybrid fixed
point theorem involving three operators in a Banach algebra under more general
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conditions than that of Dhage et. al. [10] and it will be further applied to a nonlinear
integral equation of mixed type for proving the existence results under the mixed
Carathéodory and Lipschitz conditions.

2. Preliminaries

Let X be a Banach space with norm ‖ · ‖. A mapping A : X → X is called
D-Lipschitz if there exists a continuous nondecreasing function φ : R+ → R+

satisfying

(1) ‖Ax−Ay‖ ≤ φA(‖x− y‖)

for all x, y ∈ X with φA(0) = 0. Sometimes we call the function φ a D-function
of A on X. In the special case when φA(r) = αr, α > 0, A is called a Lipschitz
with a Lipschitz constant α. In particular if α < 1, A is called a contraction
with a contraction constant α. Further if φA(r) < r for r > 0, then A is called a
nonlinear contraction on X.

The following fixed point theorem due to Boyd and Wong [1] for the nonlinear
contraction is well-known and is useful for proving the existence and the uniqueness
theorems for the nonlinear differential and integral equations.

Theorem 2.1. Let A : X → X be a nonlinear contraction. Then A has a unique
fixed point x∗ and the sequence {Anx} of successive iterations of A converges to x∗

for each x ∈ X.

An operator T : X → X is called compact if T (S) is a compact subset of X
for any S ⊂ X. Similarly T : X → X is called totally bounded if T maps a
bounded subset of X into a relatively compact subset of X. Finally T : X → X is
called a completely continuous operator if it is a continuous and totally bounded
operator on X. It is clear that every compact operator is totally bounded, but the
converse may not be true. However, the two notions are equivalent on a bounded
subset of a Banach space X.

The well-known Leray-Schauder nonlinear alternative concerning the compact
operators is

Theorem 2.2. Let K be a convex subset of a normed linear space E, U an open
subset of K with 0 ∈ U , and N : U → K a continuous and compact map. Then
either

(i) the equation x = λTx has a solution for λ = 1, or

(ii) there exists an element u ∈ ∂U such that u = λTu, for some 0 < λ < 1,
where ∂U is a boundary of U .

Theorem 2.2 is extensively used in the theory of nonlinear differential equations
for proving existence results. The method is commonly known as a priori bound
method for the nonlinear equations. See for example, Dugundji and Granas [11],
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Zeidler [16] and the references therein. Now we combine the above two Theorems
2.1 and 2.2 in Banach algebras in a different way from that given in Dhage and
O’Regan [7] and Dhage et. al. [10]. See also Dhage [8].

Theorem 2.3. Let U and U be open bounded and closed bounded subsets in a
Banach algebra X such that 0 ∈ U and let A,C : X → X and B : U → X be three
operators satisfying

(a) A and C are D-Lipschitz with D-functions φA and φC respectively,

(b) B is completely continuous, and

(c) MφA(r)+φC(r) < r for r > 0, where M = ‖B(U)‖ = sup
{‖B(x)‖ : x ∈ U

}
.

Then either

(i) the equation λA(x
λ )Bx + λC(x

λ ) = x has a solution for λ = 1, or

(ii) there is an element u ∈ ∂U such that λA(u
λ )Bu + λC(u

λ ) = u for some
0 < λ < 1, where ∂U is the boundary of U .

Proof. Let y ∈ U be fixed and define the mapping Ay : X → X by

(2) Ay(x) = AxBy + Cx

for x ∈ X. Then for any x1, x2 ∈ X, we have

‖Ay(x1)−Ay(x2)‖ = ‖Ax1By −Ax2By‖+ ‖Cx1 − Cx2‖
≤ ‖Ax1 −Ax2‖ ‖By‖+ ‖Cx1 − Cx2‖
≤ MφA (‖x1 − x2‖) + φC(‖x1 − x2‖).

This shows that Ay is a nonlinear contraction on X in view of the hypothesis (c).
Therefore an application of Theorem 2.1 yields that Ay has a unique fixed point,
say x∗ in X. Define the mapping N : U → X by

(3) Ny = z,

where z is the unique solution of the equation z = AzBy + Cz, z ∈ X. We show
that N is continuous on U . Let {yn} be a sequence in U converging to a point y.

Now

‖Nyn −Ny‖ = ‖AN(yn)Byn −AN(y)By‖+ ‖C(Nyn)− C(Ny)‖
≤ ‖AN(yn)Byn −AN(y)Byn‖+ ‖AN(y)Byn −AN(y)By‖

+‖C(Nyn)− C(Ny)‖
≤ ‖ANyn −AN(y)‖ ‖Byn‖+ ‖AN(y)‖ ‖Byn −By‖ ‖

+‖C(Nyn)− C(Ny)‖
≤ MφA(‖Nyn −Ny‖) + ‖ANy‖ ‖Byn −By‖

+φC(‖Nyn −Ny‖).
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Now using the fact that φA and φC are continuous and nondecreasing functions, we
obtain

lim sup
n→∞

‖Nyn −Ny‖ ≤ MφA

(
lim sup

n→∞
‖Nyn −Ny‖)

+‖ANy‖(lim sup
n→∞

‖Byn −By‖)

+φC

(
lim sup

n→∞
‖Nyn −Ny‖).

Now from hypothesis (c) it follows that

lim
n→∞

‖Nyn −Ny‖ = lim sup
n→∞

‖Nyn −Ny‖ = 0.

This shows that N is continuous on X. Next we show that N is a compact operator
on U . Now for any z ∈ U we have

‖Az‖ ≤ ‖A0‖+ ‖Az −A0‖
≤ ‖A0‖+ α‖z − 0‖
≤ c

where c = ‖A0‖+ α diam (U).
Let ε > 0 be given. Since B is completely continuous, B(U) is totally bounded.

Then there is a set Y = {y1, · · · , yn} in U such that

B(U) ⊂
n⋃

i=1

Bδ(wi),

where wi = B(yi) and δ =
(

1−(αM+β)
c

)
ε. Therefore for any y ∈ U we have a

yk ∈ Y such that

‖By −Byk‖ <

(
1− (αM + β)

c

)
ε.

Also we have

‖Ny −Nyk‖ ≤ ‖AzBy −AzkByk‖+ ‖Cz − Czk‖‖
≤ ‖AzBy −AzkBy‖+ ‖AzkBy −AzkBzk‖+ ‖Cz − Czk‖‖
≤ ‖Az −Azk‖‖By‖+ ‖Azk‖‖Byk −By‖

+‖Czk − Cz‖‖
≤ (αM + β)‖z − zk‖+ ‖Az‖‖Byk −By‖
≤ c

1− (αM + β)
‖By −Byk‖

< ε.
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This is true for every y ∈ U and hence

N(U) ⊂
n⋃

i=1

Bε(wi),

where wi = Nyi. As a result N(U) is totally bounded. Since N is continuous, it is
a compact operator on U . Now an application of Theorem 2.2 implies that either

(i) the equation λNx = x has a solution for λ = 1, or

(ii) there is an element u ∈ ∂U such that λNu = u for some 0 < λ < 1, where
∂U is a boundary of U .

Assume first that x ∈ Ū is a fixed point of the operator N. Then by the definition
of S,

x = Nx = A(Nx)Bx + C(Nx) = AxBx + Cx,

and so the operator equation x = AxBx + Cx has a solution in U . Suppose next
that there is an element u ∈ ∂U and a real number λ ∈ (0, 1) such that u = λNu.
Then

u

λ
= Nu = A(Nu)Bu + C(Nu) = A

(u

λ

)
Bu + λC

(u

λ

)
,

so that
u = λA

(u

λ

)
Bu + λC

(u

λ

)
.

This completes the proof. ¤
As a consequence of Theorem 2.3 we obtain the following corollary in its appli-

cable form to nonlinear equations in Banach algebras.

Corollary 2.1. Let Br(0) and Br(0) be open and closed balls in a Banach algebra
X centered at the origin 0 and of radius r, for some real number r > 0 and let
A, C : X → X and B : Br(0) → X be three operators satisfying

(a) A and C are Lipschitz with Lipschitz constants α and β respectively,

(b) B is continuous and compact, and

(c) αM + β < 1, where M = ‖B(Br(0))‖ = sup
{‖B(x)‖ : x ∈ Br(0)‖}.

Then either

(i) the equation λA(x
λ )Bx + λC(x

λ ) = x has a solution for λ = 1, or

(ii) there is an element u ∈ X such that ‖u‖ = r satisfying λA
(

u
λ

)
Bu+λC(u

λ ) =
u, for some 0 < λ < 1.

When C ≡ 0 in Theorem 2.3 we get the following interesting generalization
of a nonlinear alternative of Dhage and O’Regan [7] and Dhage [8] under weaker
conditions which seems to have numerous applications in the theory of nonlinear
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differential and integral equations.

Theorem 2.4. Let U and U denote respectively an open bounded and closed bounded
subset in a Banach algebra X such that 0 ∈ U and let A : X → X and B : U ∈ X
be two operators satisfying

(a) A is D-Lipschitz with a D-function φA,

(b) B is completely continuous, and

(c) MφA(r) < r for r > 0 where M = ‖B(U)‖ = sup
{‖B(x)‖ : x ∈ U

}
.

Then either

(i) the equation λA(x
λ )Bx = x has a solution for λ = 1, or

(ii) there is an element u ∈ ∂U such that λA
(

u
λ

)
Bu = u, for some 0 < λ < 1,

where ∂U is a boundary of U .

When φA(r) = αr, α > 0, we obtain the following result due to Dhage et. al.
[10] with correct proof.

Corollary 2.2. Let Br(0) and Br(0) be the open and closed balls in a Banach
algebra X centered at the origin 0 and of radius r, for some real number r > 0 and
let A : X → X and B : Br(0) → X be two operators satisfying

(a) A is Lipschitz with Lipschitz constant α,

(b) B is continuous and compact, and

(c) αM < 1, where M = ‖B(Br(0))‖ = sup
{‖B(Br(0))‖ : x ∈ Br(0)

}
.

Then either

(i) the equation λA(x
λ )Bx = x has a solution for λ = 1, or

(ii) there is an element u ∈ X with ‖u‖ = r such that λA
(

u
λ

)
Bu = u, for some

0 < λ < 1.

3. Functional integral equations

Let R denote the real line. Given a closed and bounded interval J = [0, 1] in R,
consider the nonlinear functional integral equation (in short FIE)of mixed type

(4) x(t) = k(t, x(µ(t))) + [f(t, x(θ(t))]
(
q(t) +

∫ σ(t)

0

v(t, s) g(s, x(η(s)) ds
)

for all t ∈ J , where µ, θ, σ, η : J → J, q : J → R, v : J × J → R and f, g, k :
J × R→ R.

A special case of FIE (4) is studied in Dhage [6] via an “a priori bound
method” for the existence theorems and the special cases of the FIE (4) occur in
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some phenomena of natural, physical and social sciences, see Chandrasekhar [2],
Deimling [3] and the references therein. Some special cases of FIE (4) have been
discussed in Dhage [5], [6] and Dhage and O’Regan [7] for existence results. In this
section we shall prove the existence theorems for the FIE (4) by an application of the
abstract fixed point theorem of the previous section under some suitable conditions
different from Dhage [6].

Let M(J,R) and B(J,R) denote respectively the spaces of all measurable and
bounded real-valued functions on J . We shall seek the solution of FIE (4) in the
space BM(J,R) of bounded and measurable real-valued functions on J . Define a
norm

(5) ‖x‖BM = max
t∈J

|x(t)|.

Clearly BM(J,R) is a Banach algebra with respect to this maximum norm and the
multiplication “ · ” defined by (x · y)(t) = x(t)y(t), t ∈ J . Let L(J,R) denote the
space of Lebesgue integrable real-valued functions on J with a norm ‖ · ‖L1 defined
by

(6) ‖x‖L1 =
∫ 1

0

|x(t)| dt.

We need the following definition in the sequel.

Definition 3.1. A mapping β : J × R → R is said to satisfy a condition of
L1-Carathéodory or simply is called L1- Carathéodory if

(i) t 7→ β(t, x) is measurable for each x ∈ R,

(ii) x 7→ β(t, x) is continuous almost everywhere for t ∈ J , and

(iii) for each real number r > 0 there exists a function hr ∈ L1(J,R) such that

|β(t, x)| ≤ hr(t) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

We consider the following set of assumptions:

(H0) The functions µ, θ, σ, η : J → J are continuous.

(H1) The function q : J → R is continuous with Q = supt∈J |q(t)|.
(H2) The function v : J × J → R is continuous and V = supt,s∈J |v(t, s)|.
(H3) The function k : J×R→ R is continuous and there is a function β1 ∈ B(J,R)

with bound ‖β1‖ such that

|k(t, x)− k(t, y)| ≤ β1(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.
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(H4) The function f : J × R → R − {0} is continuous and there is a function
α1 ∈ B(J,R)with bound ‖α1‖ such that

|f(t, x)− f(t, y)| ≤ α1(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.

(H5) The function g is L1-Carathéodory.

(H6) There exists a function φ ∈ L1(J,R) and a continuous and nondecreasing
function ψ : R+ → R+ − {0} such that

|g(t, x)| ≤ φ(t)ψ(|x|) a.e. t ∈ J

for all x ∈ R.

Theorem 3.1. Assume that the hypotheses (H0)− (H6) hold. If there exists a real
number r > 0 such that

(7) ‖α1‖ (Q + V ‖φ‖L1φ(r)) + ‖β1‖ < 1

and

(8) r >
K + FV ‖φ‖L1ψ(r)

1− [‖α1‖(Q + V ‖φ‖L1ψ(r)) + ‖β1‖]
where F = sup{|f(t, 0)| : t ∈ J} and K = sup{|k(t, 0)| : t ∈ J}, then the FIE (4)
has a solution on J .

Proof. Consider the closed ball Br(0) centered at origin 0 and of radius r, where
the real number r satisfies the inequalities (7) and (8). Define three operators A,
B and C on BM(J,R) by

Ax(t) = f(t, x(θ(t))), t ∈ J

Bx(t) = q(t) +
∫ σ(t)

0

v(t, s)g(s, x(η(s))) ds, t ∈ J, and

Cx(t) = k(t, x(µ(t))), t ∈ J.

Consider the operator equation

(9) λA
(x

λ

)
(t)Bx(t) + λC

(x

λ

)
(t) = x(t), t ∈ J.

Then the FIE (4) is equivalent to the operator equation (9) with λ = 1.
We shall show that the operators A,B and C satisfy all the conditions of The-

orem 2.3 on BM(J,R). Let x, y ∈ BM(J,R). Then by (H4),

|Ax(t)−Ay(t)| = |f(t, x(θ(t)))− f(t, y(θ(t)))|
≤ α1(t)|x(θ(t))− y(θ(t))|
≤ ‖α1‖ ‖x− y‖BM .
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Taking the maximum over t,

‖Ax−Ay‖BM ≤ ‖α1‖‖x− y‖BM .

This shows that A is Lipschitz with a Lipschitz constant ‖α1‖. Similarly it is shown
that C is a Lipschitz with a Lipschitz constant ‖β1‖. Next we shall show that the
operator B is continuous and compact on Br(0). Since g(t, x) is L1

X -Carathéodory,
by using the dominated convergence theorem (see Granas et al [12]), it can be shown
that B is continuous on BM(J,R). Let {xn} be a sequence in Br(0). Then we have
‖xn‖ ≤ r for each n ∈ N. Then by (H5),

|Bxn(t)| ≤ |q(t)|+
∣∣∣∣∣
∫ σ(t)

0

|v(t, s)||g(s, x(η(s)))| ds

∣∣∣∣∣

≤ Q +
∫ σ(t)

0

hr(s) ds

≤ Q + V ‖hr‖L1

This further, by taking supremum over t, yields that ‖Bxn‖ ≤ Q + V ‖hr‖L1 for
each n ∈ N. As a result {Bxn : n ∈ N} is a uniformly bounded set in B(Br(0)).
Let t, τ ∈ J . Then by the definition of B, we obtain

|Bxn(t) − Bxn(τ)|
≤ |q(t)− q(τ)|

+

∣∣∣∣∣
∫ σ(t)

0

v(t, s)g(s, x(η(s)))ds−
∫ σ(τ)

0

v(t, s)g(s, x(η(s)))ds

∣∣∣∣∣
≤ |q(t)− q(τ)|

+

∣∣∣∣∣
∫ σ(t)

0

v(t, s)g(s, x(η(s))) ds−
∫ σ(t)

0

v(τ, s)g(s, x(η(s))) ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ σ(t)

0

v(τ, s)g(s, x(η(s))) ds−
∫ σ(τ)

0

v(τ, s)g(s, x(η(s))) ds

∣∣∣∣∣

≤ |q(t)− q(τ)|+
∫ σ(t)

0

|v(t, s)− v(τ, s)||g(s, x(η(s)))| ds

+

∣∣∣∣∣
∫ σ(t)

σ(τ)

|v(τ, s)|hr(s) ds

∣∣∣∣∣

≤ |q(t)− q(τ)|+
∫ σ(t)

0

|v(t, s)− v(τ, s)|hr(s) ds + |p(t)− p(τ)|

where p(t) = V

∫ σ(t)

0

hr(s) ds. Since q, p and ks(t) = k(t, s) are continuous on J ,

they are uniformly continuous and consequently

|Bxn(t)−Bxn(τ))| → 0 as t → τ.
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Thus {Bxn : n ∈ N} is an equi-continuous set in B(Br(0)). Hence B(Br(0)) is
compact by Arzelà-Ascoli theorem for compactness. Thus B is a continuous and
compact operator on B(Br(0)). Finally, we have

MφA(r) + φC(r) = ‖B(Br(0))‖φA(r) + φC(r)
≤ [‖α1‖(Q + V ‖φ‖L1ψ(r))) + ‖β1‖

]
r

< r

for all r > 0, because ‖α1‖(Q + V ‖φ‖L1ψ(r)) + ‖β1‖ < 1.
Thus all the conditions of Theorem 2.3 are satisfied and hence an application

of it yields that either the conclusion (i) or the conclusion (ii) holds. We shall show
that the conclusion (ii) is not possible. Assume the contrary. Then there is an
u ∈ BM(J,R) with ‖u‖ = r satisfying (9). Therefore, we have for any 0 < λ < 1,

|u(t)| ≤ |λ
∣∣∣|k

(
t,

u(µ(t))
λ

)∣∣∣ +
∣∣∣λf

(
t,

u(θ(t))
λ

)∣∣∣

×
[
|q(t)|+

∫ σ(t)

0

|v(t, s)||g(s, u(η(t)))| ds
]

≤ λ
[
|k

(
t,

u(µ(t))
λ

)
− k(t, 0)|+ |k(t, 0)|

]

+ λ
[
|f

(
t,

u(θ(t))
λ

)
− f(t, 0)|+ |f(t, 0)|

][
Q + V

∫ σ(t)

0

|g(s, u(η(t)))| ds
]

≤ ‖β1‖|u(µ(t))|+ K +
[‖α1‖|u(θ(t))|+ F

] [
Q + V

∫ σ(t)

0

|g(s, u(η(t)))| ds
]

≤ ‖β1‖|u(µ(t))|+ K + ‖α1‖(Q + V ‖φ‖L1ψ(|u(θ(t))|)

+ FQ + FV

∫ σ(t)

0

φ(s)ψ(|u(η(s)|) ds

≤ ‖β1‖‖u‖BM + K + ‖α1‖(Q + V ‖h‖L1ψ(‖u‖BM )
+ FQ + FV ‖φ(s)‖L1ψ(‖u‖BM ).

Taking the supremum over t,
(10)
‖u‖BM ≤ ‖β1‖‖u‖BM+K+‖α1‖(Q+V ‖φ‖L1)ψ(‖u‖BM )+FQ+FV ‖φ‖L1ψ(‖u‖BM ).

Substituting ‖u‖BM = r in the above inequality (10) yields

r ≤ K + FQ + FV ‖φ‖L1ψ(r)
1− [‖β1‖+ ‖α1‖(Q + V ‖φ‖L1ψ(r)]

which is a contradiction to (8). Hence the conclusion (i) holds. As a result the
operator equation (9) has a solution in Br(0) for λ = 1 and therefore FIE (3) has a
solution on J. This completes the proof. ¤
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As an application, we consider the following initial value problem of functional
differential equation (in short FDE)

(
x(t)− k(t, x(µ(t)))

f(t, x(θ(t)))

)′
= g(s, x(η(t))) a.e. t ∈ J,(11)

x(0) = x0 ∈ R(12)

where f : J ×R→ R \ {0} is continuous, g, k : J ×R→ R and µ, θ, η : J → J are
continuous with θ(0) = 0 = µ(0).

By a solution of FDE (11)-(12) we mean a function x ∈ AC(J,R) that satisfies
the equations (11)-(12) on J , where AC(J,R) is the space of all absolutely contin-
uous real-valued functions on J .

Theorem 3.2. Assume that the hypotheses (H3)-(H6) hold. Further suppose that
there exists a real number r > 0 such that

(13) r >

K + F
( ∣∣∣∣

x0 − k(0, x0)
f(0, x0)

∣∣∣∣ + ‖φ‖L1ψ(r)
)

1−
[
‖α1‖

(∣∣∣∣
x0 − k(0, x0)

f(0, x0)

∣∣∣∣ + ‖φ‖L1ψ(r)
)

+ ‖β1‖
]

where

(14) ‖α1‖
(∣∣∣∣

x0 − k(0, x0)
f(0, x0)

∣∣∣∣ + ‖φ‖L1ψ(r)
)

+ ‖β1‖ < 1.

Then FDE (11)-(12) has a solution on J.

Proof. Set X = C(J,R), where C(J,R) is the space of continuous real-valued
functions on J . Clearly C(J,R) is a Banach algebra with respect to the norm and
multiplication given in BM(J,R). The FDE (11)-(12) is equivalent to the integral
equation

x(t) = k(t, x(µ(t))) +
[
f(t, x(θ(t))

]

×
(x0 − k(0, x0)

f(0, x0)
+

∫ t

0

g(s, x(η(s))) ds
)
, t ∈ J.(15)

Now the desired conclusion follows by an application of Theorem 3.2 with

BM(J, IR) = C(J, IR), Q =
∣∣∣x0 − k(0, x0)

f(0, x0)

∣∣∣ and v(t, s) = 1 for all t, s ∈ J , since

C(J,R) ⊂ AC(J,R). ¤

References

[1] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc.,
20(1969), 456-444.



292 B. C. Dhage

[2] S. Chandrasekhar, Radiative Heat Transfer, Dover New York, 1960.

[3] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, 1985.

[4] B. C. Dhage, A fixed point theorem and applications to nonlinear integral equations,
Proc. Int. Symp. Nonlinear Anal. Appl. Bio-Math., Waltair, India (1987), 53-59.

[5] B. C. Dhage, On existence theorems for nonlinear integral equations in Banach alge-
bras via fixed point technique, East Asian Math. J., 17(2001), 33-45.

[6] B. C. Dhage, On a fixed point theorem of Krasnoselskii-Shaefer type, EJQTDE,
6(2002), 1-9.

[7] B. C. Dhage and D. O’Regan, A fixed point theorem in Banach algebras with ap-
plications to functional integral equations, Functional Diff. Equations, 7(3-4)(2000),
259-267.

[8] B. C. Dhage, A functional integro-differential equation in Banach algebras, Functional
Diff. Equations, 11(3-4)(2004), 321-332.

[9] B. C. Dhage, Some nonlinear alternatives in Banach algebras with applications I,
Nonlinear Studies, (accepted).

[10] B. C. Dhage U. P. Dolhare and S. K. Ntouyas, Existence theorems for nonlinear
first order funtional differential equations in Banach algebras, Comm. Appl. Nonlnear
Anal., 10(4)(2003), 59-69.

[11] J. Dugundji and A. Granas, Fixed Point Theory, Monographie Math., Warsaw, 1982.

[12] A. Granas, R. B. Guenther and J. W. Lee, Some general existence principles for
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