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THE EXISTENCE OF M SOLUTIONS OF THE
NONLINEAR ELLIPTIC EQUATION; USING THE
VARIATIONAL METHOD

TACKSUN JUNG* AND Q-HEUNG CHOI

Abstract. We are concerned with the multiplicity of solutions of
the nonlinear elliptic equation with Dirichlet boundary condition.
We reveal the existence of m solutions of the nonlinear elliptic equa-

tion by a critical point theory, under some condition.

1. INTRODUCTION

In this paper we are concerned with the multiple solutions of the

nonlinear elliptic equation with Dirichlet boundary condition
—Au = g(u) in Q, (1.1)

u =0, on 9.

Here ) be a smooth bounded region in R™ with smooth boundary 9Q
and A\ < Ay < ... < A¢ < ... be the eigenvalues of —A with Dirich-
let boundary condition in €. Also we assumed that g : R — R be a
differentiable function such that ¢g(0) = 0, and

g'(00) = lim 9(v) € R.
[u|l—oo U
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This type problem was studied by several authors. Castro and Lazer
in [3] showed that if the interval (¢/(0), ¢’(00)) U (¢'(00),¢'(0)) contains
the eigenvalues A, ..., A; and ¢/(t) < A\j4; for all ¢ € R, then (1.1) has
at least three solutions. The proofs in [3] are based on global Lyapunov-
Schmidt arguments applied to variational problems. Castro and Cossio
in [4] proved that problem (1.1) has at least five solutions if g is a dif-
ferentiable function such that g(0) = 0, ¢'(0) < Ay, g'(00) € (Ak, Mes1)
with k£ > 2, and ¢/(¢) < v < Agy1. They proved this by using Lyapunov-
Schmidt reduction arguments, the mountain pass lemma, and characteri-
zations of the local degree of critical points. Chang in [5] also approached
the same problems using Morse theory, and Hofer in [10] obtained the
existence of five solutions when ¢/(00) < A;. For other results in the

study of this problem we refer the reader to (12], [13], among others.

In section 2 we recall a critical point theory which will play a crucial
role in our argument. In section 3 we define an invariant subspace X
which can be applied in the critical point theory. In section 4 we prove

the main results of this paper.

2. CRITICAL POINT THEORY

Let H be a real Hilbert space, and let Z5 act on H orthogonally. Let
Fizz, be the set of fixed points of the action, i.e.,

Fizz,={ue H|lo-u=u, Vo € Zy}.

A set A C H is called Zy-invariant, if ¢ - u € A, Yu € A Vo € 2.
A function I : H — R! is called Zo-invariant, if I(o-u) = I(u), Yu €
H,Vo € Zy. Let C(B, D) be the set of continuous functions from B into
D. If B is an invariant set we say h € C(B, D) is an equivariant map
if h(o-u) =0 h(u), Yu € B, Vo € Z,. Let S, be the sphere centered
at the origin of radius r. Let X be a Zo-invariant subspace of H and
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I: X — R be a functional of the form
1
I(u) = 5L(u)u — (),
where L : X — X is linear, continuous, symmetric and equivariant,

¥ : X — R is of class C! and invariant and Dy : X — X is compact.

The following result follows from [5].

Theorem 2.1. Assume that I € C}(X, R) is Zo-invariant and there
exist two closed invariant linear subspaces V,W of X and r > 0 with
the following properties:

a) V + W is closed and of finite codimension in X;
) Fizz, CV + W,

) LW) C W;

d) supg v I < 400 and infy I > —o0;

e) u ¢ Fizz, whenever DI(u) = 0 and

infI < I(u)< sup I.
w 5-nV

(f) I satisfies (PS). whenever infy I < ¢ < supg qy 1.

Then I possesses at least
%(dz‘m(V AW) — codimx (V + W)

distinct critical orbits in I™!([infw I,supg y I]).

3. INVARIANT SPACE

For each positive integer & let ¢y denote an eigenfunction correspond-
ing to the eigenvalue A\;. Let H be the Sobolev space H}() which is
the completion of the inner product space consisting of real C! functions

having support contained in Q with inner product

(u, v) = /Q Vu(z) - Vo(z)de,
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and a norm
1
Il =1 [Vu(e)Pa.
As it is well known, the set {¢%} can be assumed to be complete and

orthonormal in H. Let Z; act on H orthogonally. Then H has two

invariant orthogonal subspaces Fizz, and Fix%z. Let us set
X = Fizy,.

The Z; action has the representation v — —u, Vu € X. Thus Z,
acts freely on the invariant subspace X. We note that X is a closed
invariant linear subspace of H compactly embedded in L%(Q). Moreover
(-A)(X) C X, —A: X — X is an isomorphism. We need the following

some properties. Since Ay — +00, we have:

Proposition 3.1. (i) (-A)u € X implies v € X.
(ii) |lull = Cllull2(q), for some C > 0.
(iif) |lullp2¢) = 0 if and only if |ju| = 0.

Proposition 3.2. Assume that g : X — X satisfies the assumptions

of Theorem 1.1. Then all solutions in L?(Q) of
—Au = g(u) in L?(Q)

belong to X.

Proof. Let g(u) = > hxdr € L2(Q). Then

() (o) = 3 -
Hence we have
I-8)7g)1” = 3= degpht < O3

for some C > 0, which means that

I(=2)"9(u)ll < Crllull 2y
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With the aid of Proposition 3.2 it is enough that we investigate the
existence of solutions of (1.1) in the subspace X of L%(Q). Let I : X — R
be the functional defined by,

I(w) = /Q %|Vu|2—G(u), (3.1)

where G(s) = [; g(c)do. Under the assumptions of Theorem 1.1, I(u)
is well defined. By the following Proposition, I is of class C! and the

weak solutions of (1.1) coincide with the critical points of I(u).

Proposition 3.3. Assume that g(u) satisfies the assumptions of
Theorem 1.1. Then I(u) is continuous and Frechet differentiable in X

and

DIu)(h) = / V- Vh— g(u)h (3.2)
Q
for h € X. Moeover [, G(u)dz is C! with respect to u. Thus I € C1.
It is easily checked that —A and g are equivariant, so [ is invariant.

Moreover (—A)(X) C X, —=A : X — X is an isomorphism and DI(X) C

X. Therefore critical points on X are critical points on H.
4. MAIN RESULTS

The main results of this paper are the followings.

Theorem A. Assume that A\ < ¢'(00) < Agy1, Megm < ¢'(0) <
Ak+m+1 for k> 0,m > 1, and ¢'(t) < ¥ < Akpmt1. Then problem (1.1)

has at least m nontrivial solutions.

Theorem B. Assume that Ay < ¢'(0) < Apr1, Apsm < ¢'(00) <
Ak+m+1 for k>0, m > 1, and ¢'(t) <y < Agym+1, Then problem (1.1)

has at least m nontrivial solutions.
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First, we consider the case Ay < ¢'(00) < Agy1, Merm < ¢(0) <
Aktme1 for £ >0, m > 1, and ¢'(t) < v < Agyme1. Let Xi be the
subspace of X spanned by ¢1,..., ¢, whose eigenvalues are A1, ..., Ag.
Let X ,ﬂ- be the orthogonal complement of X, in X. Let r = %

and let L : X — X be the linear continuous operator such that
(Lu,v) = / (—Au) - vdx — 7‘/ uvdz.
Q 0

Then L is symmetric, bijective and equivariant. The spaces X, X ki are
the negative space of L and the positive space of L. Moreover, there

exists v > 0 such that

Yu € Xy (Lu,u) < (Mg — r)/ wldr < —v|ull?,
Q
Vu e X{ (Lu,u) > (Aky1 — T))/ wldz > v|ul®
Q

We can write

where

PY(u) = /Q[G(u) - %ruz]dm.

Since X is compactly embedded in L2, the map D1 : X — X is compact.

Lemma 4.1. Under the same assumptions of Theorem A, I(u) sat-
isfies the (P.S.)p condition for any M € R.

Lemma 4.2. Under the same assumptions of Theorem A, the func-

tion I(u) is bounded from above on Xj;

sup I(u) < oo (4.1)
u€ Xy

and from below on X ,;L;
inf I(u) > —o0. (4.2)

ueX,-cL
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Proof For some constant d > 0, we have G(s) > Jas® — d, where
=[5 gr(c)do. For u € X,

(Lu,u) < (/\k—r)/ ulde = )\k—_zili—ﬂ/uZ,
Q

/G /u—d|Q|

so that
1 A=A
I(w) < —-k—kﬂ/uQ—g/uz-{—dKﬂ < dg),
2 2 a2/
since % < a. Thus sup,ex, I(u) < co. Thus the functional I is

bounded from above on X;. Next we will prove that (4.2) holds. For
some constant d > 0, we have G,(s) > %ﬁs2 +d. For u € Xi-,

(Lu u) ()\k_i_l—r)/u?:m
Q 2
and
/ Gr(u) < é/u2+J|Q|,
Omega 2 Q
so that
1 Agy1— A = =
I(u)z--M/uQ-@-/utcum > —dq),
2 2 Q 2 /o
since 3 < ’\’°—+12_—’\5 Thus inf,¢ x1 I{u) > —o0. O

Lemma 4.3. Let Gy : R — R be a continuous function such that
Go(s)

— i >
,{21 + s2 ’ ;I—I»I(]) s2 0
Then
lim — /Go Ydz > 0.
w=9 [[ul|?
Proof. Let

(Sefhy= if s #0,
0 if s=0.
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Then h : R — R is bounded, continuous, with 2(0) = 0 and Gy(s) >

—h(s)s®. If (u,) is a sequence in H with u, — 0, then up to a sub-

Un

Tun] is strongly convergent in LZ(Q).

sequence, u, — 0 a.e., and v, =

Since
1
—_ > — 2
”unnz/QGo(un)da:_ /Qh(un)vndm,

the claim follows. O

Lemma 4.4. Under the same assumptions of Theorem A, there

exists a ball S, with radius p > 0 centered at 0 such that

sup I(u) <O0.
uESpﬂXk+m

It is easy to prove the lemma.

Lemma 4.5. Assume that the assumptions of Theorem A are satis-
fied. Let u ¢ Fizz, be a critical point of I. Then infueXkL I(u) < I(u) <

SupuESpﬁXk+m I(U).

Proof. Since the domain of the functional I is the space X and
Fizz, N X = 0, Fizz, N I_l[infuex,ﬁ I(u),supyes,nx,,,.] = 0. Let
ue X =F z':z-ZL2 be a critical point of 7. Then by the assumptions of
Theorem A, if u € X, U Xkl+m,
critical point of I. Thus u € X,'CL N Xk+m, and

then I(u) = 0 and u can not be any

DI(u)u = /Q[(—Au) -u — g(u)uldz = 0.

Then we have

I(w) = /Q (~Au) - u— /Q G(uw)]dz
= [ 3lotwyu- Guas
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For u € XkL,
1
I(u) = /[ g(u u——ru ]d:v—-/[G( )—§Tu2]da:
1
> /[ Apprul — =ru? — —ﬂu ldz — d|Q|
02 2
_dal.
Thus

I(uw) > inf I(u)>—dQ|
ueXt

For u € Xg4m, by Lemma 4.3, there exists p > 0 such that
1
I(u) = / [lg(u)u— 1g’(o)u?]dm— / [G(u) — =ru?]dz
Q2 2 2
1 2 1 / 2 1 2
[ Aermu? = ¢’ (0)u’)dz — [ [G(u) — 59'(0)u")dz
Q 2 2 Q 2

< ~/Q[G(u)——1

Thus we have

IA

¢ (0)u?)dz < Ofor u € S).

Do |

Iuw)< sup I(u)<0O.

uES,,ﬂXk+m
Thus for u € X,ﬂ' N Xktm
inf I(u)<I(w)< sup I(u)<O.
ueXg UES,NXktm

Thus we prove the lemma. O

Proof of Theorem A, B. Now we want to apply Theorem 2.1. If
weset V = Xgymand W = X ,ﬂ', then V and W are closed invariant
subspaces of X. By Proposition 3.3, I is C}(X, R). By Lemma 4.2 and
Lemma 4.4, assumption (d) of Theorem 2.1 is satisfied. By Lemma 4.5,
assumption (e) of Theorem 2.1 is satisfied. By Lemma 4.1, assumption
of (f) of Theorem 2.1 is satisfied. By Theorem 2.1 problem (1.1) has at
least 3dim(V NW) = m nontrivial solutions. In case A < ¢'(0) < Ak+1,
Meam < §(00) < Mggma1 for k>0, m 2 1, and ¢'(t) < v < Apgme1,
denote by r = %P\Hm + Ak+m+1]- We introduce L, V and W as in the
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previous case. Then we can apply the same argument of the functional

I and the conclusion follows also in this case.
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