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Abstract. We obtain characterizations of T -fuzzy (implicative) filters and some prop-

erties of T -product of fuzzy (implicative) filters in lattice implication algebras. We also

establish the extension property for T -fuzzy implicative filters.

1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role
for two aspects: One is that it extends the chain-type truth-value field of some
well-known presented logic [1] to some relatively general lattices. The other is that
the incompletely comparable property of truth value characterized by general lat-
tice can more efficiently reflect the uncertainty of people’s thinking, judging and
decision. Hence, lattice-valued logic is becoming a research field which strongly
influences the development of Algebraic Logic, Computer Science and Artificial In-
telligence Technology. Therefore Goguen [2], Pavelka [12] and Novak [11] researched
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on this lattice-valued logic formal systems. Moreover, in order to establish a logic
system with truth value in a relatively general lattice, in 1990, during the study
of the project “The Study of Abstract Fuzzy Logic” granted by National Natural
Science Foundation in China, Xu established the lattice implication algebra by com-
bining lattice and implication algebra, and investigated many useful structures [9],
[10], [14], [15], [16]. Lattice implication algebra provided the foundation to estab-
lish the corresponding logic system from the algebraic viewpoint. For the general
development of lattice implication algebras, the filter theory plays an important
role. (see [16], [3], [4], [5], [7], [8].) Xu and Qin [17] introduced the notion of fuzzy
(implicative) filters in lattice implication algebras.

In this paper, we discuss the triangular normed fuzzification of (implicative)
filters in lattice implication algebras as a generalization of fuzzy (implicative) filters.
We obtain characterizations of T -fuzzy (implicative) filters. We also establish an
extension property for T -fuzzy implicative filters. Using a t-norm T , we define
the T -product of fuzzy (implicative) filters of a lattice implication algebra, and
investigate their properties. The notion of T -fuzzy (implicative) filters is a useful
tool for studying further properties of lattice implication algebras. We can apply
this notion to study the fuzzification of positive implicative filters, associative filters,
and several kinds of ideals by using triangular norms.

2. Preliminaries

A lattice implication algebra [14] is defined to be a bounded lattice (L, ∨, ∧,
0, 1) with order-reversing involution “′” and a binary operation “→” satisfying the
following axioms:

(I1) x → (y → z) = y → (x → z),

(I2) x → x = 1,

(I3) x → y = y′ → x′,

(I4) x → y = y → x = 1 ⇒ x = y,

(I5) (x → y) → y = (y → x) → x,

(L1) (x ∨ y) → z = (x → z) ∧ (y → z),

(L2) (x ∧ y) → z = (x → z) ∨ (y → z),

for all x, y, z ∈ L

Example 2.1 ([6]). Let L = {0, a, b, c, d, 1} be a set with Hasse diagram and
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Cayley tables as follows:

r
0

JJ ­­
r½½

d r c

rJJ br­­a

r1
x x′

0 1
a c
b d
c a
d b
1 0

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

Define ∨- and ∧-operations on L as follows:

x ∨ y := (x → y) → y, x ∧ y := ((x′ → y′) → y′)′,

for all x, y ∈ L. Then L is a lattice implication algebra.
In the sequel, the binary operation “→” will be denoted by juxtaposition. We

can define a partial ordering “≤” on a lattice implication algebra L by x ≤ y if and
only if xy = 1.

In a lattice implication algebra L, the following hold (see [14]):

(p1) 0x = 1, 1x = x and x1 = 1.

(p2) xy ≤ (yz)(xz).

(p3) x ≤ y implies yz ≤ xz and zx ≤ zy.

(p4) x′ = x0.

(p5) x ∨ y = (xy)y.

(p6) ((yx)y′)′ = x ∧ y = ((xy)x′)′.

(p7) x ≤ (xy)y.

Generally, an aggregation operator is a mapping F : In → I (n ≥ 2), where
I = [0, 1]. Essentially it takes a collection of arguments and provides an aggregated
value. An important class of aggregation operators are the triangular norm oper-
ators, t-norm and t-conorm. These operators play a significant role in the theory
of fuzzy subsets by generalizing the intersection (and) and union (or) operators,
respectively.

By a t-norm T (see [13]) we mean a function T : I × I → I satisfying the
following conditions:

(T1) T (x, 1) = x,

(T2) T (x, y) ≤ T (x, z) whenever y ≤ z,

(T3) T (x, y) = T (y, x),

(T4) T (x, T (y, z)) = T (T (x, y), z),
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for all x, y, z ∈ I.
A few t-norms which are frequently encountered are “Tm”, “Prod” and “min”

defined by Tm(x, y) = max{x + y − 1, 0}, Prod(x, y) = xy and

min{x, y} =
{

x if x ≤ y,
y if y < x.

For a t-norm T , let ∆T denote the set of elements α ∈ I such that T (α, α) = α,
that is,

∆T := {α ∈ I | T (α, α) = α}.
Note that every t-norm T has a useful property:

(p8) T (α, β) ≤ min{α, β} for all α, β ∈ I.

A t-norm T on I is said to be continuous if T is a continuous function from I×I to I
with respect to the usual topology. A fuzzy set in a set L is a function µ : L → [0, 1].
For α ∈ [0, 1], the set U(µ;α) := {x ∈ L | µ(x) ≥ α} is called an upper level subset
of µ. A fuzzy set µ in a set L is said to satisfy imaginable property if Im(µ) ⊆ ∆T .

A subset F of a lattice implication algebra L is called a filter [16] of L if it
satisfies

(a1) 1 ∈ F,

(a2) (∀x ∈ F ) (∀y ∈ L) (xy ∈ F ⇒ y ∈ F ).

A subset F of a lattice implication algebra L is called an implicative filter [16]
of L if it satisfies

(a1) 1 ∈ F,

(a3) (∀x, y, z ∈ L) (x(yz) ∈ F, xy ∈ F ⇒ xz ∈ F ).

Xu and Qin [17] considered the fuzzification of filters and implicative filters in
lattice implication algebras.

A fuzzy set µ in a lattice implication algebra L is called a fuzzy filter [17] of L
if it satisfies

(b1) (∀x ∈ L) (µ(1) ≥ µ(x)),

(b2) (∀x, y ∈ L) (µ(y) ≥ min{µ(x), µ(xy)}).
A fuzzy set µ in a lattice implication algebra L is called a fuzzy implicative filter

[17] of L if it satisfies

(b1) (∀x ∈ L) (µ(1) ≥ µ(x)),

(b3) (∀x, y, z ∈ L) (µ(xz) ≥ min{µ(x(yz)), µ(xy)}).
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Recall that every fuzzy implicative filter is a fuzzy filter, but the converse is not
true in general.

3. Triangular normed fuzzy (implicative) filters

In what follows, let L and T denote a lattice implication algebra and a t-norm,
respectively, unless otherwise specified.

We call a fuzzy set µ in L upper (resp. lower) if µ(x) ≥ 1
2 (resp. µ(x) < 1

2 ) for
all x ∈ L.

And a fuzzy set µ in a lattice implication algebra L is called an upper fuzzy filter
of L with respect to a t-norm T, usually abbreviated to upper T -fuzzy filter of L, if
it satisfies

(b1) (∀x ∈ L) (µ(1) ≥ µ(x)),

(c1) µ is upper,

(c2) (∀x, y ∈ L) (µ(y) ≥ T (µ(x), µ(xy))).

A fuzzy set µ in L is called a fuzzy filter of L with respect to a t-norm T, usually
abbreviated to T -fuzzy filter of L, if it satisfies (b1) and (c2).

If we take T = min, then a T -fuzzy filter of L is only a fuzzy filter of L.

Example 3.1. Let L be a lattice implication algebra in Example 2.1. Define a
fuzzy set µ in L by µ(b) = µ(c) = µ(1) = 0.7 and µ(0) = µ(a) = µ(d) = 0.07. Then
µ is a Tm-fuzzy filter of L which does not satisfy the imaginable property. On the
other hand, a fuzzy set ν in L defined by

ν(x) =

{
1 if x ∈ {b, c, 1},
0 otherwise,

is an imaginable Tm-fuzzy filter of L.

Theorem 3.2. Let F be a filter of L and let µ be a fuzzy set in L defined by

µ(x) =

{
α if x ∈ F,

β otherwise.

(i) If α, β ∈ (0, 1) with α > β, then µ is a Tm-fuzzy filter of L which is not
imaginable.

(ii) If α = 1 and β = 0, then µ is an imaginable Tm-fuzzy filter of L.

Proof. (i) Let x, y ∈ L. If y ∈ F, then clearly

(∀x ∈ L) (µ(y) = α ≥ Tm(µ(x), µ(xy)).

Assume that y /∈ F. Then x /∈ F or xy /∈ F. Hence µ(x) = β or µ(xy) = β, and so
µ(y) ≥ β ≥ Tm(µ(x), µ(xy)). Obviously, µ is not imaginable.
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(ii) It is similar to the proof of (i) and clearly Im(µ) ⊆ ∆Tm . ¤

Theorem 3.3. Every imaginable T -fuzzy filter is a fuzzy filter for every t-norm T.

Proof. Let µ be an imaginable T -fuzzy filter of L. Then

(∀x, y ∈ L) (µ(y) ≥ T (µ(x), µ(xy))).

Since µ is imaginable, it follows from (T2), (T3) and (p8) that

min{µ(x), µ(xy)} = T (min{µ(x), µ(xy)}, min{µ(x), µ(xy)})
≤ T (µ(x), µ(xy)) ≤ min{µ(x), µ(xy)}.

so that µ(y) ≥ T (µ(x), µ(xy)) = min{µ(x), µ(xy)}. Hence µ is a fuzzy filter of L.
¤

Lemma 3.4. If µ is a T -fuzzy filter of L satisfying the imaginable property, then
µ is order preserving.

Proof. Let x, y ∈ L be such that x ≤ y. Then xy = 1, and so

µ(y) ≥ T (µ(xy), µ(x)) = T (µ(1), µ(x)) ≥ T (µ(x), µ(x)) = µ(x).

This completes the proof. ¤

Theorem 3.5. If µ is an imaginable T -fuzzy filter of L for every t-norm T , then

(∀x, y, z ∈ L) (x(yz) = 1 ⇒ µ(z) ≥ T (µ(x), µ(y))).(1)

Conversely, if µ satisfies the imaginable property and the condition (1), then µ is a
T -fuzzy filter of L.

Proof. Let x, y, z ∈ L be such that x(yz) = 1. Then x ≤ yz, and so µ(x) ≤ µ(yz)
by Lemma 3.4. Using (c2), (T2) and (T3), we have

µ(z) ≥ T (µ(y), µ(yz)) ≥ T (µ(x), µ(y)).

Now assume that µ satisfies the imaginable property and the condition (1). Since
x ≤ x1 for all x ∈ L, we have µ(1) ≥ T (µ(x), µ(x)) = µ(x) by (1). Since x ≤ (xy)y
for all x, y ∈ L, it follows from (1) that µ(y) ≥ T (µ(x), µ(xy)). Hence µ is a T -fuzzy
filter of L. ¤

A fuzzy set µ in L is called a fuzzy implicative filter of L with respect to a
t-norm T, usually abbreviated to T -fuzzy implicative filter of L, if it satisfies

(b1) (∀x ∈ L) (µ(1) ≥ µ(x)),

(c3) (∀x, y, z ∈ L) (µ(xz) ≥ T (µ(x(yz)), µ(xy))).
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Theorem 3.6. Every T -fuzzy implicative filter is a T -fuzzy filter.

Proof. Let µ be a T -fuzzy implicative filter of L. If we replace x by 1 in (c3) and
use (p1), then

µ(z) = µ(1z) ≥ T (µ(1(yz)), µ(1y)) = T (µ(yz), µ(y))

for all y, z ∈ L. Hence µ is a T -fuzzy filter of L. ¤
The following example shows that the converse of Theorem 3.6 is not true in

general.

Example 3.7. Let L := {0, a, b, c, 1}. Define the partially ordered relation on L as
0 ≤ a ≤ b ≤ c ≤ 1, and define

x ∧ y := min{x, y}, x ∨ y := max{x, y}
for all x, y ∈ L and “′”and “→” as follows:

x x′

0 1
a c
b b
c a
1 0

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c a b c 1 1
1 0 a b c 1

Then (L,∨,∧, ′,→) is a lattice implication algebra (see Xu and Qin [16]). Let µ be
a fuzzy set in L defined by µ(1) > µ(x) for all x ∈ L \ {1}. Then µ is a Tm-fuzzy
filter of L, but it is not a Tm-fuzzy implicative filter of L because

µ(a0) = µ(c) < 2µ(1) = max{2µ(1), 0}
= Tm(µ(1), µ(1)) = Tm(µ(a(b0)), µ(ab)).

Theorem 3.8. If µ is an imaginable T -fuzzy filter of L satisfying the following
inequality:

(2) (∀x, y, z ∈ L) (µ(yz) ≥ T (µ(x(y(yz))), µ(x))),

then µ is an imaginable T -fuzzy implicative filter of L.

Proof. Note that x(yz) = y(xz) ≤ (xy)(x(xz)) for all x, y, z ∈ L. Since µ is order
preserving by Lemma 3.4, it follows from (2), (T2) and (T3) that

µ(xz) ≥ T (µ((xy)(x(xz))), µ(xy)) ≥ T (µ(x(yz)), µ(xy)).

Hence µ is an imaginable T -fuzzy implicative filter of L. ¤

Theorem 3.9. Let µ be a T -fuzzy filter of L that satisfies the imaginable property.
Then the following are equivalent:
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(i) µ is a T -fuzzy implicative filter of L.

(ii) (∀x, y ∈ L) (µ(xy) ≥ µ(x(xy))).

(iii) (∀x, y, z ∈ L) (µ((xy)(xz)) ≥ µ(x(yz))).

Proof. (i) ⇒ (ii) Assume that µ is a T -fuzzy implicative filter of L. Using (c3), (I2),
(b1), (T2) and (T3), we have

µ(xy) ≥ T (µ(x(xy)), µ(xx)) = T (µ(x(xy)), µ(1))
≥ T (µ(x(xy)), µ(x(xy))) = µ(x(xy))

for all x, y ∈ L. This proves (ii).
(ii) ⇒ (iii) Suppose that (ii) is valid and let x, y, z ∈ L. Note that x(yz) ≤

x((xy)(xz)) by (I1), (p2) and (p3). Since µ is order preserving by Lemma 3.4, it
follows from (I1) and (ii) that

µ((xy)(xz)) = µ(x((xy)z)) ≥ µ(x(x((xy)z)))
= µ(x((xy)(xz))) ≥ µ(x(yz)),

which proves (iii).
(iii) ⇒ (i) Assume that (iii) holds. Using (c2), (T2) and (T3), we get

µ(xz) ≥ T (µ((xy)(xz)), µ(xy)) ≥ T (µ(x(yz)), µ(xy)).

This completes the proof. ¤

Theorem 3.10 If µ is a T -fuzzy (implicative) filter of L, then U(µ; 1) is either
empty or a (implicative) filter of L.

Proof. Assume that U(µ; 1) 6= ∅ and µ is a T -fuzzy (implicative) filter of L. Then
there exists x ∈ U(µ; 1), and so µ(1) ≥ µ(x) = 1, i.e., 1 ∈ U(µ; 1). Let x, y ∈ L be
such that x ∈ U(µ; 1) and xy ∈ U(µ; 1). Then

µ(y) ≥ T (µ(x), µ(xy)) = T (1, 1) = 1,

and so y ∈ U(µ; 1). Now, let x, y, z ∈ L be such that x(yz) ∈ U(µ; 1) and xy ∈
U(µ; 1). It follows from (c3) and (T1) that

µ(xz) ≥ T (µ(x(yz)), µ(xy)) = T (1, 1) = 1

so that xz ∈ U(µ; 1). Hence U(µ; 1) is a (implicative) filter of L. ¤

Lemma 3.11 ([17]). A fuzzy set µ in L is a fuzzy (implicative) filter of L if and
only if the nonempty level set U(µ; α) of µ is a (implicative) filter of L.

Theorem 3.12. If µ is a fuzzy set in L whose nonempty level set U(µ; α), α ∈ [0, 1],
is a (implicative) filter of L, then µ is a T -fuzzy (implicative) filter of L.
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Proof. Assume that the nonempty level set U(µ;α) of µ is an implicative filter of
L. Then µ is a fuzzy implicative filter of L by Lemma 3.11. Thus

µ(xz) ≥ min{µ(x(yz)), µ(xy)} ≥ T (µ(x(yz)), µ(xy))

for all x, y, z ∈ L. Hence µ is a T -fuzzy implicative filter of L. ¤

Theorem 3.13 (Extension property for a T -fuzzy implicative filter). Let µ and ν
be T -fuzzy filters of L that satisfy the imaginable property. Assume that µ(1) ≥ ν(1)
and µ ≤ ν, that is, µ(x) ≤ ν(x) for all x ∈ L \ {1}. If µ is a T -fuzzy implicative
filter of L, then so is ν.

Proof. Let x, y, z ∈ L. Using (I1) and Theorem 3.9, we have

ν((x(yz))((xy)(xz))) = ν((xy)((x(yz))(xz)))
= ν((xy)(x((x(yz))z))) ≥ µ((xy)(x((x(yz))z)))
≥ µ(x(y((x(yz))z))) = µ((x(yz))(x(yz))) = µ(1) ≥ ν(1).

It follows from (c2), (b1), (T2) and (T3) that

ν((xy)(xz)) ≥ T (ν(x(yz)), ν((x(yz))((xy)(xz))))
≥ T (ν(x(yz)), ν(1)) ≥ T (ν(x(yz)), ν(x(yz))) = ν(x(yz))

so from Theorem 3.9 that ν is a T -fuzzy implicative filter of L. ¤

Theorem 3.14. Let {µi | i ∈ Λ} be a class of T -fuzzy implicative filters of L. Then⋂
i∈Λ

µi is a T -fuzzy implicative filter of L where
⋂

i∈Λ

µi is defined by
( ⋂

i∈Λ

µi

)
(x) =

inf
i∈Λ

µi(x) for all x ∈ L.

Proof. For any x ∈ L, we have
(⋂

i∈Λ

µi

)
(1) = inf

i∈Λ
µi(1) ≥ inf

i∈Λ
µi(x) =

(⋂

i∈Λ

µi

)
(x).

Let x, y, z ∈ L. Then
(⋂

i∈Λ

µi

)
(xz) = inf

i∈Λ
µi(xz) ≥ inf

i∈Λ
T (µi(x(yz)), µi(xy))

≥ T (inf
i∈Λ

µi(x(yz)), inf
i∈Λ

µi(xy))

= T (
(⋂

i∈Λ

µi

)
(x(yz)),

(⋂

i∈Λ

µi

)
(xy)).

Hence
⋂

i∈Λ

µi is a T -fuzzy implicative filter of L. ¤

Let f be a mapping defined on L. If ν is a fuzzy set in f(L), then the fuzzy set
µ = ν ◦ f in G, i.e., the fuzzy set defined by µ(x) = ν(f(x)) for all x ∈ L, is called
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the preimage of ν under f .

Theorem 3.15. Let f : L → M be an onto homomorphism of lattice implication
algebras, ν a T -fuzzy (implicative) filter of M and µ the preimage of ν under f .
Then µ is a T -fuzzy (implicative) filter of L. Moreover, if ν satisfies the imaginable
property then so does µ.

Proof. For any x ∈ L, we get

µ(x) = ν(f(x)) ≤ ν(1) = ν(f(1)) = µ(1).

Let x, y ∈ L. Then µ(y) = ν(f(y)) ≥ T (ν(a), ν(af(y))) for any a ∈ M. Let xa be
an arbitrary preimage of a under f . Then

µ(y) ≥ T (ν(a), ν(af(y))) = T (ν(f(xa)), ν(f(xa)f(y)))
= T (ν(f(xa)), ν(f(xay))) = T (µ(xa), µ(xay)).

Since a is arbitrary, the above inequality is true for all x ∈ L, i.e.,

(∀x, y ∈ L) (µ(y) ≥ T (µ(x), µ(xy))),

which proves that µ is a T -fuzzy filter of L. Next, let x, y, z ∈ L. If ν is T -fuzzy
implicative, then

µ(xz) = ν(f(xz)) = ν(f(x)f(z)) ≥ T (ν(f(x)(bf(z))), ν(f(x)b))

for any b ∈ M. Consider an arbitrary preimage yb of b under f . Then

µ(xz) ≥ T (ν(f(x)(bf(z))), ν(f(x)b))
= T (ν(f(x)(f(yb)f(z))), ν(f(x)f(yb)))
= T (ν(f(x(ybz))), ν(f(xyb)))
= T (µ(x(ybz)), µ(xyb)).

Since b is arbitrary, this inequality is true for all y ∈ L, that is,

(∀x, y, z ∈ L) (µ(xz) ≥ T (µ(x(yz)), µ(xy))).

Hence µ is a T -fuzzy implicative filter of L. Now if ν satisfies the imaginable
property and α ∈ Im(µ), then α = µ(x) = ν(f(x)) for some x ∈ L. Therefore
Im(µ) ⊆ Im(ν) ⊆ ∆T , and so µ satisfies the imaginable property. ¤

We say that a fuzzy set µ in L has the sup property if, for any subset A of L,
there exists a0 ∈ A such that µ(a0) = sup

a∈A
µ(a).

Theorem 3.16. Let f : L → M be a homomorphism of a lattice implication algebra
L onto a lattice implication algebra M . Let µ be a T -fuzzy implicative filter of L
which has the sup property. Then the image, say ν, of µ under f is a T -fuzzy
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implicative filter of M, where ν is defined by ν(a) = sup
x∈f−1(a)

µ(x) for all a ∈ M.

Proof. Since 1 ∈ f−1(1), we have

ν(1) = sup
t∈f−1(1)

µ(t) = µ(1) ≥ µ(x)

for all x ∈ L, and so ν(1) ≥ sup
t∈f−1(a)

µ(t) = ν(a) for all a ∈ M. For any a, b, c ∈ M,

let xa ∈ f−1(a), xb ∈ f−1(b) and xc ∈ f−1(c) be such that µ(xaxc) = sup
t∈f−1(ac)

µ(t),

µ(xa(xbxc)) = sup
t∈f−1(a(bc))

µ(t), and µ(xaxb) = sup
t∈f−1(ab)

µ(t). Then

ν(ac) = sup
t∈f−1(ac)

µ(t) = µ(xaxc) ≥ T (µ(xa(xbxc)), µ(xaxb))

= T
(

sup
t∈f−1(a(bc))

µ(t), sup
t∈f−1(ab)

µ(t)
)

= T (ν(a(bc)), ν(ab)).

Hence ν is a T -fuzzy implicative filter of L. ¤

We now present some methods of constructions of T -fuzzy (implicative) filters.
Let µ and ν be two fuzzy sets in L. Then we define the T -product of µ and ν,

denoted by [µ · ν]T , by [µ · ν]T (x) = T (µ(x), ν(x)) for all x ∈ L.

Theorem 3.17. Let µ and ν be T -fuzzy implicative filters of L. If a t-norm T ∗

dominates T , i.e., if

T ∗(T (α, γ), T (β, δ)) ≥ T (T ∗(α, β), T ∗(γ, δ))

for all α, β, γ, δ ∈ [0, 1], then T ∗-product [µ · ν]T∗ is a T -fuzzy implicative filter of
L.

Proof. For every x ∈ L, we obtain

[µ · ν]T∗(1) = T ∗(µ(1), ν(1)) ≥ T ∗(µ(x), ν(x)) = [µ · ν]T∗(x).

Let x, y, z ∈ L. Then

[µ · ν]T∗(xz) = T ∗(µ(xz), ν(xz))
≥ T ∗(T (µ(x(yz)), µ(xy)), T (ν(x(yz)), ν(xy)))
≥ T (T ∗(µ(x(yz)), ν(x(yz))), T ∗(µ(xy), ν(xy)))
= T ([µ · ν]T∗(x(yz)), [µ · ν]T∗(xy)).

Therefore [µ · ν]T∗ is a T -fuzzy implicative filter of L. ¤

Theorem 3.18. Let L = L1×L2 be the direct product of lattice implication algebras
L1 and L2. If µ1 and µ2 are T -fuzzy implicative filters of L1 and L2 respectively,
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then µ = µ1 × µ2 is a T -fuzzy implicative filter of L defined by µ(x) = (µ1 ×
µ2)(x1, x2) = T (µ1(x1), µ2(x2)) for all (x1, x2) = x ∈ L.

Proof. For any x = (x1, x2) ∈ L, we have

µ(x) = (µ1 × µ2)(x1, x2) = T (µ1(x1), µ2(x2))
≤ T (µ1(1), µ2(1)) = (µ1 × µ2)(1, 1) = µ(1).

Let x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ L. Then

µ(xz) = (µ1 × µ2)((x1, x2)(z1, z2))
= (µ1 × µ2)(x1z1, x2z2) = T (µ1(x1z1), µ2(x2z2))
≥ T (T (µ1(x1(y1z1)), µ1(x1y1)), T (µ2(x2(y2z2)), µ2(x2y2)))
= T (T (µ1(x1(y1z1)), µ2(x2(y2z2))), T (µ1(x1y1), µ2(x2y2)))
= T ((µ1 × µ2)(x1(y1z1), x2(y2z2)), (µ1 × µ2)(x1y1, x2y2))
= T ((µ1 × µ2)((x1, x2)((y1, y2)(z1, z2))), (µ1 × µ2)((x1, x2)(y1, y2)))
= T (µ(x(yz)), µ(xy)).

Hence µ = µ1 × µ2 is a T -fuzzy implicative filter of L. ¤
For two T -fuzzy implicative filters µ and ν of L, the relationship between T -

fuzzy implicative filter µ× ν and [µ · ν]T can be viewed via the following diagram.

L L× L

I I × I

-

¾
? ? ?

©©©©©©©¼

d

T

[µ · ν]T µ νµ× ν

where I = [0, 1] and d : L → L × L is defined by d(x) = (x, x). It is easy to
verify that [µ · ν]T is the preimage of µ× ν under d.
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