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Abstract. In this paper, we introduce the concept of op-idempotents. It is shown that

every exchange ring can be characterized by op-idempotents

A ring R is an exchange ring if for every right R-module A and two decompo-
sitions A = M ⊕ N = ⊕i∈IAi, where MR

∼= R and the index set I is finite, there
exist submodules A′i ⊆ Ai such that A = M ⊕ (⊕i∈IA

′
i). Clearly, regular rings,

π-regular rings, semi-perfect rings, left or right continuous rings, clean rings and
unit C∗-algebras of real rank zero (cf. [2, Theorem 7.2]) are all exchange rings.
We say that an element e ∈ R is a op-idempotent provided that e2 = −e. Let
R = Z/3Z. Then R is an exchange ring and 2 ∈ R is a op-idempotent, while it is
not an idempotent. Also we know that every non-zero Boolean ring is an exchange
ring without any non-trivial op-idempotent. Thus op-idempotents are different from
idempotents in exchange rings. In this paper, we observe that every exchange ring
can be characterized by its op-idempotents.

Throughout the paper, all rings are associative with identities. We always use
J(R) to denote the Jacobson radical of R.

Lemma 1. Let R be a ring. Then the following are equivalent:

(1) R is an exchange ring.

(2) For any a ∈ R, there exists a op-idempotent e ∈ R such that e ∈ Ra and
1 + e ∈ R(1 + a).

Proof. (1) ⇒ (2) For any a ∈ R, we have −a ∈ R. By [6, Theorem 2.1], there exists
an idempotent f ∈ R such that f ∈ R(−a) and 1 − f ∈ R(1 + a). Set e = −f .
Then we see that e ∈ R is a op-idempotent. Furthermore, we get e ∈ Ra and
1 + e ∈ R(1 + a), as required.

(2) ⇒ (1) For any a ∈ R, we get −a ∈ R. So there exists an op-idempotent
e ∈ R(−a) such that 1 + e ∈ R(1− a). Let f = −e. Then f = f2 ∈ R. In addition,
we have f ∈ Ra and 1− f ∈ R(1− a). By [6, Theorem 2.1], R is an exchange ring.
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Lemma 2. The following are equivalent:

(1) R is an exchange ring.

(2) For any a ∈ R, there exists a op-idempotent e ∈ R such that e−a ∈ R(a+a2).

Proof. (1) ⇒ (2) For any a ∈ R, it follows by Lemma 1 that there exists a op-
idempotent e ∈ Ra such that 1 + e ∈ R(1 + a). Hence e− a = e(1 + a)− (1 + e)a ∈
R(a + a2).

(2) ⇒ (1) For any a ∈ R, we have −a ∈ R; hence, there exists a op-idempotent
e ∈ R such that e − (−a) ∈ R

( − a + (−a)2
)
. This infers that e + a ∈ R(a − a2).

Assume that e + a = ra(1 − a) for some r ∈ R. Then e = r(1 − a)a − a ∈ Ra
and 1 + e = (1 + ra)(1 − a) ∈ R(1 − a). Let f = −e. Then f = f2 ∈ Ra and
1− f ∈ R(1− a). In view of [6, Theorem 2.1], we complete the proof. ¤

We say that every op-idempotent lifts modulo a left ideal I of R in case x+x2 ∈ I
implies that e− x ∈ I for some op-idempotent e ∈ R.

Theorem 3. Let R be a ring. Then the following are equivalent:

(1) R is an exchange ring.

(2) Every op-idempotent lifts modulo any left ideal of R.

Proof. (1) ⇒ (2) Let I be a left ideal of R. Suppose that x + x2 ∈ I. By virtue
of Lemma 2, there exists a op-idempotent e ∈ R such that e− x ∈ R(x + x2) ⊆ I.
That is, every op-idempotent lifts modulo I, as required.

(2) ⇒ (1) Let a ∈ R, and let I = R(a + a2). Clearly, a + a2 ∈ I. So we have a
op-idempotent e ∈ R such that e−a ∈ I. That is, e−a ∈ R(a+a2). Using Lemma
2, we conclude that R is an exchange ring. ¤

Since a ring R is an exchange ring if and only if so is the opposite ring Rop,
by Theorem 3, we deduce that a ring R is an exchange ring if and only if every
op-idempotent lifts modulo any right ideal of R. Recall that an element u ∈ R is
full in case RuR = R. In [1], Ara and Goodearl studied stable rank of full corners
of a ring. Now we investigate exchange rings by using full elements.

Lemma 4. Let R be an exchange ring. Given ax + b = 1 in R, there exists y ∈ R
such that a + by ∈ R is a full element.

Proof. Assume that ax + b = 1 with a, x, b ∈ R. Since R is an exchange ring, by [6,
Theorem 2.1], there exists e = e2 ∈ R such that e = bs and 1−e = (1− b)t for some
s, t ∈ R. So 1−e = axt, hence (1−e)aR = (1−e)R. Thus we can find u, v ∈ R such
that 1 = (1−e)au+ev. It is easy to verify that (1−e)

(
(1−e)a+e

)
u+e

(
(1−e)a+e

)
v =

(1 − e)au + ev = 1, whence R
(
(1 − e)a + e

)
R = R. Set y = s(1 − a). Therefore

R(a + by)R = R
(
a + bs(1− a)

)
R = R

(
a + e(1− a)

)
R = R, as asserted. ¤

Lemma 5. Let R be an exchange ring, and let e, f ∈ R be op-idempotents. If
eR ∼= fR, then there exists a full element u ∈ R such that eu = uf .
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Proof. Since ψ : eR ∼= fR, we have f = ψ(er) =
(
fψ(e)e

)(
erf). Let a = erf

and b = fψ(e)e. Then f = ba. Clearly, ab = (erf)
(
fψ(e)e

)
= ψ1(f)f

(
fψ(e)e

)
=

ψ−1
(
fψ(−e)

)
= ψ−1

( − ψ(−e)
)

= e. So we can find a ∈ eRf and b ∈ fRe such
that e = ab and f = ba. In addition, aba = ea = −a and bab = fb = −b. As
a(−b) + (1 + ab) = 1 with a, b ∈ R, it follows by Lemma 4 that there exists y ∈ R
such that v := a + (1 + ab)y ∈ R is a full element. Obviously, b = −bab = −bvb.
Let u = (1 + ab + vb)v(1 + ba + bv). As (1 + ab + vb)2 = 1 = (1 + ba + bv)2, we
have RuR = RvR = R. Furthermore, we get eu = ab(1 + ab + vb)v(1 + ba + bv) =
−abv(1 + ba + bv) = −a = −(1 + ab + vb)vba = (1 + ab + vb)v(1 + ba + bv)ba = uf ,
as required. ¤

Theorem 6. A ring R is an exchange ring if and only if for any a ∈ R, there exist
op-idempotents e, f ∈ R such that

(1) e ∈ aR, 1 + e ∈ (1 + a)R.

(2) f ∈ Ra, 1 + f ∈ R(1 + a).

(3) euv = uvf with full elements u, v ∈ R.

Proof. One direction is obvious by Lemma 1. Conversely, assume now that R
is an exchange ring. For any a ∈ R, we have an idempotent e′ ∈ R such that
e′ ∈ aR, 1− e′ ∈ (1−a)R. Set g′ = 1− e′ and b = 1−a. Then e′ ∈ aR and g′ ∈ bR.
Suppose that e′ = ar′ and g′ = bs′. Set r = r′e′ and s = s′g′. Then we have
rar = r, sbs = s, rbs = 0 and sar = 0. Let r′′ = 1 − sb + rb and s′′ = 1 − ra + sa.
Similarly to [7, Proposition], we get r′′ar′′ = r′′, s′′bs′′ = s′′ and r′′a + s′′b = 1. Let
f ′ = r′′a. Then we have an idempotent f ′ ∈ Ra such that 1− f ′ = s′′b ∈ R(1− a).

Clearly, s′bR ∼= bs′R = g′R. By Lemma 5, we have g′u = us′b and RuR = R.
Hence e′u = (1 − g′)u = u(1 − s′b). On the other hand, 1 − s′b = ar′′; hence, we
get (1 − s′b)R ∼= r′′aR = f ′R. By Lemma 5 again, we have (1 − s′b)v = vf ′ and
RvR = R. Therefore e′uv = u(1− s′b)v = uvf ′ and RuR = RvR = R. Let e = −e′

and f = −f ′. Then e, f ∈ R are both op-idempotents. Applying the argument
above to −a ∈ R, we complete the proof. ¤

It is well known that every finitely generated projective right module over an
exchange ring is generated by some idempotents. Now we extend this fact to op-
idempotents as follows.

Proposition 7. Let P be a finitely generated projective right module over an
exchange ring R. Then there exist op-idempotents e1, · · · , en ∈ R such that
P ∼= e1R⊕ · · · ⊕ enR.

Proof. Clearly, P has the finitely exchange property. Set M = P ⊕ Q. Then

M = P ⊕ Q =
n⊕

i=1

Ri with all Ri
∼= R. By the finite exchange property of P ,

we have Qi(1 ≤ i ≤ n) such that M = P ⊕ ( n⊕
i=1

Qi

)
, where all Qi are direct

summands of Ri respectively. Assume that Qi ⊕ Pi = Ri for all i. Then we have
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P⊕( n⊕
i=1

Qi

)
=

( n⊕
i=1

Pi

)⊕( n⊕
i=1

Qi

)
. Hence P ∼= P1⊕· · ·⊕Pn, where Pi is isomorphic

to a direct summand of R as a right R-module for all i.
Suppose that M is a finitely generated projective right module over an exchange

ring R. Assume that there is a right R-module Q such that P ⊕ Q ∼= R. Let
e : R ∼= P ⊕ Q → P given by e(p, q) = −p for any p ∈ P, q ∈ Q. Then P ∼= eR.
So we have op-idempotents ei such that Pi

∼= eiR. Therefore P ∼= e1R⊕ · · · ⊕ enR
with all op-idempotents ei ∈ R. ¤

Recall that an ideal I of a ring R is an exchange ideal provided that for any
x ∈ I, there exists an idempotent e ∈ I such that e− x ∈ R(x− x2). Clearly, every
strongly π-regular ideal of a ring is an exchange ideal. Now we study exchange rings
by virtue of exchange ideals.

Theorem 8. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) R is an exchange ring.

(2) For any a ∈ R, there exists a op-idempotent e ∈ R such that e ∈ Ra + I such
that 1 + e ∈ R(1 + a) + I.

Proof. (1) ⇒ (2) is trivial by Lemma 1.
(2) ⇒ (1) For any x + I ∈ R/I, there exists a op-idempotent e ∈ R such that

e ∈ Rx + I such that 1 + e ∈ R(1 + x) + I. So there exists a op-idempotent
e + I ∈ (R/I)(x + I) such that (1 + I) + (e + I) ∈ (R/I)

(
(1 + I) + (x + I)

)
. In view

of Lemma 1, R/I is an exchange ring.
Given x− x2 ∈ I, there exists a op-idempotent e ∈ R such that e ∈ R(−x) + I

such that 1 + e ∈ R(1 − x) + I. Let f = −e. Then f = f2, f ∈ Rx + I and
1−f ∈ R(1−x)+I. This infers that f−x = f(1−x)−(1−f)x ∈ R(x−x2)+I ⊆ I.
That is, every idempotent lifts modulo I. According to [1, Theorem 2.2], R is an
exchange ring. ¤

Corollary 9. Let R be a ring. Then the following are equivalent:

(1) R is an exchange ring.

(2) For any a ∈ R, there exists a op-idempotent e ∈ R such that e ∈ Ra + J(R)
such that 1 + e ∈ R(1 + a) + J(R).

Proof. Since J(R) is an exchange ideal of R, we obtain the result by Theorem 8.¤

Analogously [8, Theorem 3], we show that if for any a ∈ R there exists a op-
idempotent e ∈ R such that Ra + J(R) = Re + J(R), then R is an exchange ring.

Theorem 10. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) R is an exchange ring.
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(2) For any a ∈ R, there exists a op-idempotent e ∈ R such that e − a ∈ R(a +
a2) + I.

Proof. (1) ⇒ (2) is clear by Lemma 2.
(2) ⇒ (1) For any x ∈ R, there exists an idempotent e ∈ R such that e − x ∈

R(x+x2)+I. Assume now that e−x = r(x+x2)+s for r ∈ R, s ∈ I. Then we have
e =

(
1+r(1+x)

)
x+s ∈ Rx+I such that 1+e = (1+rx)(1+x)+s ∈ R(1+x)+I.

According to Theorem 8, R is an exchange ring. ¤

Corollary 11. Let I be an exchange ideal of a ring R. If for any a ∈ R there exist
a op-idempotent e ∈ R and a unit u ∈ R such that a ≡ e + u (mod I). Then R is
an exchange ring.

Proof. Given any x ∈ R, we have a op-idempotent e ∈ R and a unit u ∈ R such that
x ≡ e+u (mod I). It is easy to verify that u

(
x+u−1(1+ e)u

) ≡ eu+ue+u2 +u ≡
x2 + x (mod I). Set f = −u−1(1 + e)u. Then f2 = −f ∈ R. In addition, we have
x− f ∈ R(x + x2) + I. According to Theorem 8, R is an exchange ring. ¤

It follows by Corollary 11 that a ring R is an exchange ring if and only if
for any a ∈ R there exist a op-idempotent e ∈ R and a unit u ∈ R such that
a ≡ e + u (mod J(R)).
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