On op-idempotents

Shuqin Wang
Department of Mathematics, Shandong Economic University, Jinan 250014, People's Republic of China
e-mail: wsq482@sohu.com

Abstract. In this paper, we introduce the concept of op-idempotents. It is shown that every exchange ring can be characterized by op-idempotents

A ring R is an exchange ring if for every right R-module A and two decompositions $A=M \oplus N=\oplus_{i \in I} A_{i}$, where $M_{R} \cong R$ and the index set I is finite, there exist submodules $A_{i}^{\prime} \subseteq A_{i}$ such that $A=M \oplus\left(\oplus_{i \in I} A_{i}^{\prime}\right)$. Clearly, regular rings, π-regular rings, semi-perfect rings, left or right continuous rings, clean rings and unit C^{*}-algebras of real rank zero (cf. [2, Theorem 7.2]) are all exchange rings. We say that an element $e \in R$ is a op-idempotent provided that $e^{2}=-e$. Let $R=\mathbb{Z} / 3 \mathbb{Z}$. Then R is an exchange ring and $\overline{2} \in R$ is a op-idempotent, while it is not an idempotent. Also we know that every non-zero Boolean ring is an exchange ring without any non-trivial op-idempotent. Thus op-idempotents are different from idempotents in exchange rings. In this paper, we observe that every exchange ring can be characterized by its op-idempotents.

Throughout the paper, all rings are associative with identities. We always use $J(R)$ to denote the Jacobson radical of R.

Lemma 1. Let R be a ring. Then the following are equivalent:
(1) R is an exchange ring.
(2) For any $a \in R$, there exists a op-idempotent $e \in R$ such that $e \in R a$ and $1+e \in R(1+a)$.

Proof. (1) $\Rightarrow(2)$ For any $a \in R$, we have $-a \in R$. By [6, Theorem 2.1], there exists an idempotent $f \in R$ such that $f \in R(-a)$ and $1-f \in R(1+a)$. Set $e=-f$. Then we see that $e \in R$ is a op-idempotent. Furthermore, we get $e \in R a$ and $1+e \in R(1+a)$, as required.
$(2) \Rightarrow(1)$ For any $a \in R$, we get $-a \in R$. So there exists an op-idempotent $e \in R(-a)$ such that $1+e \in R(1-a)$. Let $f=-e$. Then $f=f^{2} \in R$. In addition, we have $f \in R a$ and $1-f \in R(1-a)$. By [6, Theorem 2.1], R is an exchange ring.

Key words and phrases: exchange ring, op-idempotent.

Lemma 2. The following are equivalent:
(1) R is an exchange ring.
(2) For any $a \in R$, there exists a op-idempotent $e \in R$ such that $e-a \in R\left(a+a^{2}\right)$.

Proof. (1) $\Rightarrow(2)$ For any $a \in R$, it follows by Lemma 1 that there exists a opidempotent $e \in R a$ such that $1+e \in R(1+a)$. Hence $e-a=e(1+a)-(1+e) a \in$ $R\left(a+a^{2}\right)$.
(2) \Rightarrow (1) For any $a \in R$, we have $-a \in R$; hence, there exists a op-idempotent $e \in R$ such that $e-(-a) \in R\left(-a+(-a)^{2}\right)$. This infers that $e+a \in R\left(a-a^{2}\right)$. Assume that $e+a=r a(1-a)$ for some $r \in R$. Then $e=r(1-a) a-a \in R a$ and $1+e=(1+r a)(1-a) \in R(1-a)$. Let $f=-e$. Then $f=f^{2} \in R a$ and $1-f \in R(1-a)$. In view of [6, Theorem 2.1], we complete the proof.

We say that every op-idempotent lifts modulo a left ideal I of R in case $x+x^{2} \in I$ implies that $e-x \in I$ for some op-idempotent $e \in R$.

Theorem 3. Let R be a ring. Then the following are equivalent:
(1) R is an exchange ring.
(2) Every op-idempotent lifts modulo any left ideal of R.

Proof. (1) $\Rightarrow(2)$ Let I be a left ideal of R. Suppose that $x+x^{2} \in I$. By virtue of Lemma 2, there exists a op-idempotent $e \in R$ such that $e-x \in R\left(x+x^{2}\right) \subseteq I$. That is, every op-idempotent lifts modulo I, as required.
$(2) \Rightarrow(1)$ Let $a \in R$, and let $I=R\left(a+a^{2}\right)$. Clearly, $a+a^{2} \in I$. So we have a op-idempotent $e \in R$ such that $e-a \in I$. That is, $e-a \in R\left(a+a^{2}\right)$. Using Lemma 2 , we conclude that R is an exchange ring.

Since a ring R is an exchange ring if and only if so is the opposite ring $R^{o p}$, by Theorem 3, we deduce that a ring R is an exchange ring if and only if every op-idempotent lifts modulo any right ideal of R. Recall that an element $u \in R$ is full in case $R u R=R$. In [1], Ara and Goodearl studied stable rank of full corners of a ring. Now we investigate exchange rings by using full elements.

Lemma 4. Let R be an exchange ring. Given $a x+b=1$ in R, there exists $y \in R$ such that $a+b y \in R$ is a full element.
Proof. Assume that $a x+b=1$ with $a, x, b \in R$. Since R is an exchange ring, by [6, Theorem 2.1], there exists $e=e^{2} \in R$ such that $e=b s$ and $1-e=(1-b) t$ for some $s, t \in R$. So $1-e=a x t$, hence $(1-e) a R=(1-e) R$. Thus we can find $u, v \in R$ such that $1=(1-e) a u+e v$. It is easy to verify that $(1-e)((1-e) a+e) u+e((1-e) a+e) v=$ $(1-e) a u+e v=1$, whence $R((1-e) a+e) R=R$. Set $y=s(1-a)$. Therefore $R(a+b y) R=R(a+b s(1-a)) R=R(a+e(1-a)) R=R$, as asserted.

Lemma 5. Let R be an exchange ring, and let $e, f \in R$ be op-idempotents. If $e R \cong f R$, then there exists a full element $u \in R$ such that $e u=u f$.

Proof. Since $\psi: e R \cong f R$, we have $f=\psi(e r)=(f \psi(e) e)(e r f)$. Let $a=e r f$ and $b=f \psi(e) e$. Then $f=b a$. Clearly, $a b=(e r f)(f \psi(e) e)=\psi^{1}(f) f(f \psi(e) e)=$ $\psi^{-1}(f \psi(-e))=\psi^{-1}(-\psi(-e))=e$. So we can find $a \in e R f$ and $b \in f R e$ such that $e=a b$ and $f=b a$. In addition, $a b a=e a=-a$ and $b a b=f b=-b$. As $a(-b)+(1+a b)=1$ with $a, b \in R$, it follows by Lemma 4 that there exists $y \in R$ such that $v:=a+(1+a b) y \in R$ is a full element. Obviously, $b=-b a b=-b v b$. Let $u=(1+a b+v b) v(1+b a+b v)$. As $(1+a b+v b)^{2}=1=(1+b a+b v)^{2}$, we have $R u R=R v R=R$. Furthermore, we get $e u=a b(1+a b+v b) v(1+b a+b v)=$ $-a b v(1+b a+b v)=-a=-(1+a b+v b) v b a=(1+a b+v b) v(1+b a+b v) b a=u f$, as required.

Theorem 6. A ring R is an exchange ring if and only if for any $a \in R$, there exist op-idempotents $e, f \in R$ such that
(1) $e \in a R, 1+e \in(1+a) R$.
(2) $f \in R a, 1+f \in R(1+a)$.
(3) euv $=u v f$ with full elements $u, v \in R$.

Proof. One direction is obvious by Lemma 1. Conversely, assume now that R is an exchange ring. For any $a \in R$, we have an idempotent $e^{\prime} \in R$ such that $e^{\prime} \in a R, 1-e^{\prime} \in(1-a) R$. Set $g^{\prime}=1-e^{\prime}$ and $b=1-a$. Then $e^{\prime} \in a R$ and $g^{\prime} \in b R$. Suppose that $e^{\prime}=a r^{\prime}$ and $g^{\prime}=b s^{\prime}$. Set $r=r^{\prime} e^{\prime}$ and $s=s^{\prime} g^{\prime}$. Then we have $r a r=r, s b s=s, r b s=0$ and $s a r=0$. Let $r^{\prime \prime}=1-s b+r b$ and $s^{\prime \prime}=1-r a+s a$. Similarly to [7, Proposition], we get $r^{\prime \prime} a r^{\prime \prime}=r^{\prime \prime}, s^{\prime \prime} b s^{\prime \prime}=s^{\prime \prime}$ and $r^{\prime \prime} a+s^{\prime \prime} b=1$. Let $f^{\prime}=r^{\prime \prime} a$. Then we have an idempotent $f^{\prime} \in R a$ such that $1-f^{\prime}=s^{\prime \prime} b \in R(1-a)$.

Clearly, $s^{\prime} b R \cong b s^{\prime} R=g^{\prime} R$. By Lemma 5, we have $g^{\prime} u=u s^{\prime} b$ and $R u R=R$. Hence $e^{\prime} u=\left(1-g^{\prime}\right) u=u\left(1-s^{\prime} b\right)$. On the other hand, $1-s^{\prime} b=a r^{\prime \prime}$; hence, we get $\left(1-s^{\prime} b\right) R \cong r^{\prime \prime} a R=f^{\prime} R$. By Lemma 5 again, we have $\left(1-s^{\prime} b\right) v=v f^{\prime}$ and $R v R=R$. Therefore $e^{\prime} u v=u\left(1-s^{\prime} b\right) v=u v f^{\prime}$ and $R u R=R v R=R$. Let $e=-e^{\prime}$ and $f=-f^{\prime}$. Then $e, f \in R$ are both op-idempotents. Applying the argument above to $-a \in R$, we complete the proof.

It is well known that every finitely generated projective right module over an exchange ring is generated by some idempotents. Now we extend this fact to opidempotents as follows.

Proposition 7. Let P be a finitely generated projective right module over an exchange ring R. Then there exist op-idempotents $e_{1}, \cdots, e_{n} \in R$ such that $P \cong e_{1} R \oplus \cdots \oplus e_{n} R$.
Proof. Clearly, P has the finitely exchange property. Set $M=P \oplus Q$. Then $M=P \oplus Q=\bigoplus_{i=1}^{n} R_{i}$ with all $R_{i} \cong R$. By the finite exchange property of P, we have $Q_{i}(1 \leq i \leq n)$ such that $M=P \oplus\left(\bigoplus_{i=1}^{n} Q_{i}\right)$, where all Q_{i} are direct summands of R_{i} respectively. Assume that $Q_{i} \oplus \stackrel{i=1}{P} P_{i}=R_{i}$ for all i. Then we have
$P \oplus\left(\bigoplus_{i=1}^{n} Q_{i}\right)=\left(\bigoplus_{i=1}^{n} P_{i}\right) \oplus\left(\bigoplus_{i=1}^{n} Q_{i}\right)$. Hence $P \cong P_{1} \oplus \cdots \oplus P_{n}$, where P_{i} is isomorphic to a direct summand of R as a right R-module for all i.

Suppose that M is a finitely generated projective right module over an exchange ring R. Assume that there is a right R-module Q such that $P \oplus Q \cong R$. Let $e: R \cong P \oplus Q \rightarrow P$ given by $e(p, q)=-p$ for any $p \in P, q \in Q$. Then $P \cong e R$. So we have op-idempotents e_{i} such that $P_{i} \cong e_{i} R$. Therefore $P \cong e_{1} R \oplus \cdots \oplus e_{n} R$ with all op-idempotents $e_{i} \in R$.

Recall that an ideal I of a ring R is an exchange ideal provided that for any $x \in I$, there exists an idempotent $e \in I$ such that $e-x \in R\left(x-x^{2}\right)$. Clearly, every strongly π-regular ideal of a ring is an exchange ideal. Now we study exchange rings by virtue of exchange ideals.

Theorem 8. Let I be an exchange ideal of a ring R. Then the following are equivalent:
(1) R is an exchange ring.
(2) For any $a \in R$, there exists a op-idempotent $e \in R$ such that $e \in R a+I$ such that $1+e \in R(1+a)+I$.

Proof. (1) $\Rightarrow(2)$ is trivial by Lemma 1 .
(2) \Rightarrow (1) For any $x+I \in R / I$, there exists a op-idempotent $e \in R$ such that $e \in R x+I$ such that $1+e \in R(1+x)+I$. So there exists a op-idempotent $e+I \in(R / I)(x+I)$ such that $(1+I)+(e+I) \in(R / I)((1+I)+(x+I))$. In view of Lemma $1, R / I$ is an exchange ring.

Given $x-x^{2} \in I$, there exists a op-idempotent $e \in R$ such that $e \in R(-x)+I$ such that $1+e \in R(1-x)+I$. Let $f=-e$. Then $f=f^{2}, f \in R x+I$ and $1-f \in R(1-x)+I$. This infers that $f-x=f(1-x)-(1-f) x \in R\left(x-x^{2}\right)+I \subseteq I$. That is, every idempotent lifts modulo I. According to [1, Theorem 2.2], R is an exchange ring.

Corollary 9. Let R be a ring. Then the following are equivalent:
(1) R is an exchange ring.
(2) For any $a \in R$, there exists a op-idempotent $e \in R$ such that $e \in R a+J(R)$ such that $1+e \in R(1+a)+J(R)$.

Proof. Since $J(R)$ is an exchange ideal of R, we obtain the result by Theorem 8 .
Analogously [8, Theorem 3], we show that if for any $a \in R$ there exists a opidempotent $e \in R$ such that $R a+J(R)=R e+J(R)$, then R is an exchange ring.
Theorem 10. Let I be an exchange ideal of a ring R. Then the following are equivalent:
(1) R is an exchange ring.
(2) For any $a \in R$, there exists a op-idempotent $e \in R$ such that $e-a \in R(a+$ $\left.a^{2}\right)+I$.

Proof. (1) \Rightarrow (2) is clear by Lemma 2 .
(2) \Rightarrow (1) For any $x \in R$, there exists an idempotent $e \in R$ such that $e-x \in$ $R\left(x+x^{2}\right)+I$. Assume now that $e-x=r\left(x+x^{2}\right)+s$ for $r \in R, s \in I$. Then we have $e=(1+r(1+x)) x+s \in R x+I$ such that $1+e=(1+r x)(1+x)+s \in R(1+x)+I$. According to Theorem $8, R$ is an exchange ring.

Corollary 11. Let I be an exchange ideal of a ring R. If for any $a \in R$ there exist a op-idempotent $e \in R$ and a unit $u \in R$ such that $a \equiv e+u(\bmod I)$. Then R is an exchange ring.
Proof. Given any $x \in R$, we have a op-idempotent $e \in R$ and a unit $u \in R$ such that $x \equiv e+u(\bmod I)$. It is easy to verify that $u\left(x+u^{-1}(1+e) u\right) \equiv e u+u e+u^{2}+u \equiv$ $x^{2}+x(\bmod I)$. Set $f=-u^{-1}(1+e) u$. Then $f^{2}=-f \in R$. In addition, we have $x-f \in R\left(x+x^{2}\right)+I$. According to Theorem $8, R$ is an exchange ring.

It follows by Corollary 11 that a ring R is an exchange ring if and only if for any $a \in R$ there exist a op-idempotent $e \in R$ and a unit $u \in R$ such that $a \equiv e+u(\bmod J(R))$.

References

[1] P. Ara and K. R. Goodearl, Stable rank of corner rings, Preprint, 2003.
[2] P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math., 105(1998), 105-137.
[3] V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Algebra, 22(1994), 4737-4749.
[4] H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory, 2(1999), 201-207.
[5] H. Chen, Units, idempotents and stable range conditions, Comm. Algebra, 29(2001), 703-717.
[6] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229(1977), 269-278.
[7] W. K. Nicholson, On exchange rings, Comm. Algebra, 25(1997), 1917-1918.
[8] R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann., 199(1972), 31-36.

