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Normal Interpolation on AX =Y in CSL-algebra Algl
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ABSTRACT. Let £ be a commutative subspace lattice on a Hilbert space H and X and Y
be operators on H. Let

i=1

MXZ{ZEini:nEN, fieHandEieﬁ}

and
My—{ZEini:neN, fieHandEiEL}.
i=1
Then the following are equivalent.

(i) There is an operator A in Algl such that AX =Y, Ag = 0 for all g in ./\/lxj'7
A*A = AA* and every F in L reduces A.

(ii) sup{K(E, f):n €N, f, e Hand E; € L} < oo, My C Mx and there is an op-
erator T acting on H such that (EX f,Tg) = (EY f, Xg) and (ETf,Tg) = (EY f,Yg) for
all f, gin H and F in £, where K(F, ) = | Y1, E5Y fill/l| >, Ei X fil].

1. Introduction

A commutative subspace lattice or CSLL is a strongly closed lattice of commu-
tative projections on a Hilbert space H. We assume that the projections 0 and [
lie in £. We usually identify projections and their ranges, so that it makes sense
to speak of an operator as leaving a projection invariant. Algl is the algebra of all
bounded linear operators on H that leave invariant all the projections in L. If £ is
CSL, then AlgL is called a CSL-algebra.

Let M be a subset of a Hilbert space 7. Then M means the closure of M and
M+ the orthogonal complement of M. Let N be the set of all natural numbers
and let C be the set of all complex numbers. In this paper, we use the convention
% = 0, when necessary.
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Let H be a Hilbert space and £ be a commutative subspace lattice of orthogonal
projections on H containing 0 and I through this paper.

Theorem A ([3]). Let L be a commutative subspace lattice on H. Let X and Y
be operators on ‘H. Then the following are equivalent.

(i) There is an operator A in AlgL such that AX =Y and every E in L reduces
A.
(ii) sup{K(E,f) :neN,fyec H and E; € L} < c0.

Theorem B ([4]). Let H be a Hilbert space and L be a subspace lattice on H. Let
X and Y be operators on H. Assume that the rangeX is dense in H. Then the
following statements are equivalent.

(i) There exists a normal operator A in AlgL such that AX =Y and every E
in L reduces A.

(ii) sup{K(E, f) :neN, fi € H and E; € L} < oo and there is an operator.

T acting on H such that (X f,Tg) = (Y f,Xg) and (Tf,Tg) =Y f,Yg) for all
fand g inH.

In Theorem B, we investigated to find a necessary and sufficient condition for
normal interpolation problem in Algl and we assumed the density of the range of
X. In this paper, we tried to delete the range dense condition.

2. Results

Let X and Y be operators acting on H. Let

Mx = {ZEIXJCITLEN,‘]Z € H and EIEE}

i=1
and

My={ZEinZ—:neN,fieHandEieﬁ}.

i=1

Lemma 2.1. Let A, X and Y be operators on H. If Y = AX, Af =0 for all f in
Mixj' and AE = EA for all E in L. Then the following are equivalent.

(i) My C Mx.

(ii) For all f in Mixj', A*f is in M7XL.
Proof. (i) = (ii). Let f be a vector in My Then (A*f, EXg) = (f,AEXg) =
(f,EYg) =0 for all g in H and F in £ because My C Mx. So A*f is a vector in
Mx .

(ii) = (i). Let f be a vector in Mx . Then 0 = (A*f, EXh) = (f, EYh) for
all Fin £ and h in ‘H. So f is a vector in WL. Hence My C Myx. O
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Lemma 2.2. Let A, X and Y be operators on H. Assume that AX =Y, Af =0
for all f in MXL, AE = FA for oll E in L and A*A = AA*. If f is a vector in
Mxl, then A*f is a vector in /\/lxl

Proof. Let f be a vector in MXJ' and EXh = A*gy + g2 for E in L, where g5 is a
vector in range A", Then

(A*f,EXh) = (A*f,A*g1+g2) = (A"f, A*q1) + (A" f, g2)
(A" f,A%g1) = (Af, Ag1) = 0.

— 1
So A*f is a vector in Mx . O

Theorem 2.3. The following statements are equivalent.

(i) There is an operator A in AlgL such that Y = AX, Ag = 0 for all g in
Mx ", AE = EA for all E in £ and AA* = A*A.

(i) sup{K(E,f):n€N, fy e H and E; € L} < 0o, My C Mx and there
is an operator T on M such that Tf € Mx, (EXf,Tg) = (EYf, Xg) and
(ETf,Tg) =(EY f,Yg) forall f, g in H and E in L.

Proof. (i) = (ii). If we assume that (i) holds, then by Theorem A, sup {K(E, f) : n € N,
fi€ Hand E; € L} < co. And by Lemmas 2.1 and 2.2, My CMx. Let A*X=T.
Then

(EX[,Tg) = (EXf, A" Xg) = (AEXf, Xg) = (EY f, Xg)
and
(ETf,Tg) = (EA*Xf, A" Xg(= (AEX f,AXg) = (EY f,Yg)
for all f, g in H and E in L. Since

(Tf,9)=(A"X[,g9) =(Xf, Ag) = (Xf,0)=0

for all fin H and ¢ in MXL, Tfe Mx.
Conversely, by Theorem A, there is an operator A in £ such that AX =Y, Ag =

0 for all g in MXJ_ and every F in £ reduces A. Since (EX f,Tg) = (EY f, Xg),
we have

ZE Xf;), Xg) = ZAE Xfi, Xg) = ZE Y fi, Xg) = ZE X f;,Tg).
=1
So (Ah,Xg) = (h,Tg) for all h in Mx and ¢ in H. Since (Ah, Xg) =0 = (h,Tg)
for h € MXJ_ and g in H, A*X =T. Since (EY f,Yg) = (ETf,Tg) for all E in £
and f, g in H,

A EXf),Yg) ZEYf“Yg ZETfZ,Tg>

i=1 i=1 i=1

ZEA Xf;,Tg) = ZEsz,AT9>

=1 =1
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forallm € N, gin H and E; € L. So (Af,Yg) = (f, ATg) for all f in Mx and
g in M. Since (Af,Yg) = 0 and (f, ATg) = (A*f,Tg) = 0 for all fin My and
ginH (A*f € Mx " and Tg € My). Hence A*Y = AT. Thus AA*X = A*AX.
So AA*f = A*Af for all f in Mx. Since AE = FA, A*E = EA* for all F in L.
Since A*Ag =0= AA*g for all g in /\/lixl by Lemmas 2.1 and 2.2, AA* = A*A.01

Let X1, Xo, -+, Xp, Y1,Ys, -+ )Y, be operators acting on H (n is a fixed natural
number). Let

m;
Nx = {ZZEk,iXifk,i cm; €N, 1 <n, fr, € Hand Ey; € E}

k=11i=1

and

m; l
Ny = {ZZEk,iY;fk,i :m; €N, I<n, fr;€Hand Ey; € £} )

k=11i=1

Theorem C ([3]). Let £ be a commutative subspace lattice on H. Let X1, Xa,- -,
Xn,Y1,Ya,--- Y, be operators on H. Assume that the range of one of the X,’s is
dense inH (p=1,2,---,n). Let

m; l
201 BriYifr
|| Zk:l Zi:l EkzXszz”

Then the following statements are equivalent.

(i) There exists an operator A in AlgL such that AX; = Y;(i = 1,2,--- ,n),
Ag=0 for all g in J\TXL and every E in L reduces A.

(ii) sup{K(E, f,m):m; €N, I <n,fr;, € H and Ey; € L} < c0.

Lemma 2.4. Let A, X; and Y; be operators on 'H fori = 1,2,--- ,n. If AX; =
Yi(i =1,2,---,n), Ag =0 for all g in /\TXl and AE = EA for oll E in L, then
the following are equivalent.

(i) Ny C Nx.
(ii) For all f in ./\TXJ_, A*f is a vector in ./\TXJ_.
Proof. (i) = (ii). Let f be a vector in Nx . Then

foralli=1,2,---,n and for all E; in £ because Ny C Nx. So A*f is a vector in
1

Nx .
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(ii) = (i). Let f be a vector in J\TXL. Then
0= (A"f, E; X;h;) = (f, AE; X;hi) = (f, E;Yih)
for all E; in £, h; in H and ¢ = 1,2,--- ,n. So f is a vector in /\Tyj_. Hence
Ny C Nx. O

Lemma 2.5. Let A, X; and Y; be operators on H fori=1,2,--- n. Assume that
AX, =Y, (i=1,2,---,n), Ag=0 for allg inJ\TXl, AE = FEA for all E in L and
A*A = AA*. Then A*f is a vector in J\TXl for all f in ./\Txl.

Proof. Let f be a vector in /\TXL and E; X, fi = A*gi, + gi, for E; in £ and f; in

e —
‘H, where g;, is a vector in range A*~ (i = 1,2,--- ,n). Then

<A*f7 A*g’i1> = <Af7 Agz1> =0.

—
So A* f is a vector in Ny . O

Theorem 2.6. The following are equivalent.

(i) There is an operator A in AlgL such thatV; = AX; (i=1,2,---,n), Ag=0
forall g in Nx—, AE = EA for all E in £ and AA* = A*A. -

(ii) sup{K(E, f,m) :m;eN, I<n, fr.€H and E; €L} <00, Ny C Nx and
there are operators T, on 'H such that

(EqXqfe Tpgp) = (EqYofe, Xpgp)y (EqTqfe, Togp) = (EqYqlq, Yodp)

and Ty f, € Nx for fy, g, inH, E, in L andp, ¢ =1,2,--- ,n.

Proof. (i) = (ii). By Theorem C, sup { K (F, f,m) : m;€N, I<n, fy,€H and E} ;€ L}
<o0. By Lemmas 2.4 and 2.5, Ny C Nx. Let A*X, =T, (p=1,2,--- ,n). Then

(EqXqfoy Tpgp) = (EqXqfq, A" Xpgp)
= (AE X, fq, Xpp)
= (EgYyfq, Xpgp)

and

(EqTyfe, Tpgp) = (EqA™Xqfq, A" Xpgp)
(AE X fq, AXpgp)
= (EyYyfq, Yogp)-

Since (f“pflng) = (A* X, fp, 9) = (Xpfp, Ag) = (Xpfp,0) = 0 for all f, in H and g
in Nx , T, f, € Nx.
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(ii) = (i). By Theorem C, there is an operator A in AlgL such that AX; =Y;
(i=1,2,---,n), Af =0 for all f in /\TXJ' and every F in L reduces A. Since
(EqXqfq, Tpgp) = (EqYqfq, Xpgp) for all E; in L and all p, ¢=1,2, --- ,n,

my 1 mg l

<A(Z Z EriXifri), Xpgp) = <Z Z Bk iYi fris Xpp)
k=1 i=1 k=1 i=1

mg l

= (Z Z By i Xifri Tpgp),

k=1 i=1
m; € NI <n, fri€H, Ex; € Landp=1,2,--- ,n. So (Ah, Xpgp) = (h, Tpgp)
for all hin Nx, g, in H and p = 1,2,--- ,n. Since (Ah, X,g,) = 0 = (h,T,g,) for
all h in /\TXL, gpin Hand p=1,2,---,n, A*X, = T,. Since (E,Y,fq,Yo9p) =
<EqquQ7Tpgp>7 Eq S L) fq7 gq S H and D, q= 1a2a N,

m; 1 m; 1
AQCY BeiXifii) Yogp) = O EriYifrir Yogp)

k=11i=1 k=11i=1

m; 1
= O EiTifei Togy)

k=11=1

m; 1
= O EeiA"Xifri Togp)

k=111=1

my 1
= <22Ek,iXifk,iaATpgp>-
k=11i=1
So (Af,Y,g,) = (f, AT,g,) for all f in Nx and g, in H(p = 1,2,---,n). Since
(Af,Y,g,) = 0 and (f, AT,g,) = (A*f,Tpg,) = 0 for all f in ./\TXJ_, gp in H and
p=1,2,---,n by Lemmas 2.4 and 2.5. So A*Y, = AT,(p = 1,2,---,n). Thus
A*AX, = AA*X,(p = 1,2,--- ,n). Hence A*Af = AA*f for all f in Nx. Since

A*Ag=0= AA*g for all g in ]\TXl by Lemmas 2.4 and 2.5, A*A = AA*. O

Let {X,} and {Y,,} be two infinite sequences of operators on H. Let

my 1
Kx = {ZzEk,iXifk,i : mi,l S N, fk,i € H and Ekﬂ' S ,C}

k=11i=1
and l
Ky = {ZZEMYJM :mi,l €N, fr; € Hand Ey; € ,c} :
k=11=1

With the similar proof as Lemmas 2.4, 2.5 and Theorem 2.6, we can get the
following Theorem.
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Theorem 2.7. The following statements are equivalent.
(i) There is an operator A in AlgL such that AX,, =Y, (n=1,2,---), Ag=0

for all g in @L, every E in L reduces A and AA* = A*A. L L
(ii) sup{K(E,f,m):m;,leN, fr, e Hand E; € L} < oo, Ky C Kx
and there are operators T, on H (n = 1,2,---) such that (E;Xqfq, Tpgp) =

(EqYqfo, Xpgp)s (EqTqfe:Tpgp) = (EqYqfq, Yogp) and Tpf, € Nx for fps gp in
H, E,in L andp, q=1,2,---.
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