KYUNGPOOK Math. J. 45(2005), 199-209

Properties of Topological Ideals and Banach Category Theorem

V. RENUKA DEVI Department of Mathematics, Govindammal Aditanar College, Tiruchendur-628 215, Tamil Nadu, India

D. SIVARAJ Department of Mathematics, Aditanar College, Tiruchendur-628 216, Tamil Nadu, India e-mail: ttn_sivaraj@sancharnet.in

T. TAMIZH CHELVAM Department of Mathematics, M. S. University, Tirunelveli, Tamil Nadu, India

ABSTRACT. An ideal space is \mathcal{I} -resolvable if it has two disjoint \mathcal{I} -dense subsets. We answer the question: If X is \mathcal{I} -resolvable, then is X ($\mathcal{I} \cup \mathcal{N}$)-resolvable?, posed by Dontchev, Ganster and Rose. We give three generalizations of the well known Banach Category Theorem and deduce the Banach category Theorem as a corollary. Characterizations of completely codense ideals and \mathcal{I} -locally closed sets are given and their properties are discussed.

1. Introduction and preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski ([10]) and Vaidyanathaswamy ([16]). An *ideal* \mathcal{I} on a topological space (X, τ) is a collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. A σ -*ideal* is an ideal which satisfies (iii) If $A_i \in \mathcal{I}$ for $i \in \mathbb{N}$, then $\cup \{A_i \mid i \in \mathbb{N}\} \in \mathcal{I}$, where \mathbb{N} is the set of all natural numbers. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $()^*:\wp(X) \to \wp(X)$, called the *local function* ([10]) of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ ([15]). When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* or $\tau^*(\mathcal{I})$ for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an *ideal space*. A subset A of an ideal space

Received February 13, 2004, and, in revised form, October 30, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54A10.

Key words and phrases: codense, completely codense, regular and normal ideals, \mathcal{I} -resolvability, \mathcal{I} -open, \mathcal{I} -dense, \mathcal{I} -locally closed.

 (X, τ, \mathcal{I}) is said to be \mathcal{I} -open ([9]) if $A \subset int(A^*)$. A is said to be \mathcal{I} -dense ([4]) if $A^* = X$. Recall that A is said to be \star -dense in itself if $A \subset A^*$, A is τ^* -closed if $A^* \subset A$ ([8]) and A is \star -perfect if $A = A^*$. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) and \mathcal{M} is the ideal of all first category(meager) subsets in (X, τ) . If \mathcal{I} is any ideal, then the set of all countable union of members of \mathcal{I} is a σ -ideal and is denoted by \mathcal{I}_{σ} . \mathcal{I}_{σ} is called the *countable extension* of \mathcal{I} . Clearly, $\mathcal{M} = \mathcal{N}_{\sigma}$.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $cl^{\star}(A)$ and $int^{\star}(A)$ will, respectively, denote the closure and interior of A in (X, τ^*) . A subset A of a space (X, τ) is an α set ([12]) if $A \subset int(cl(int(A)))$. The family of all α -sets in (X, τ) is denoted by τ^{α} . τ^{α} is a topology on X which is finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$. An open subset A of a space (X, τ) is said to be regularopen if A = int(cl(A)). The complement of a regular period set is regular closed. The family of all regularopen subsets of (X, τ) is denoted by $RO(X, \tau)$ or simply RO(X). A subset A of a space (X, τ) is said to be preopen ([11]) if $A \subset int(cl(A))$. The family of all preopen sets is denoted by $PO(X, \tau)$ or simply, PO(X). The largest preopen set contained in A is called the *preinterior* of A and is denoted by pint(A) and $pint(A) = A \cap int(cl(A))$. A is preopen if and only if there is a regular pen set G such that $A \subset G$ and cl(A) = cl(G) [5, Proposition 2.1]. An ideal \mathcal{I} in a space (X,τ) is said to be compatible with respect to τ ([8])(supercompact [15]), denoted by $\mathcal{I} \sim \tau$, if for every subset A of X and for each $x \in A$, there exists a neighborhood U of x such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$. Given a space (X, τ) and ideals \mathcal{I} and \Im on X, the extension of \mathcal{I} via \Im ([9]), denoted by $\mathcal{I} \star \Im$, is the ideal given by $\mathcal{I} \star \mathfrak{I} = \{ A \subset X \mid A^*(\mathcal{I}) \in \mathfrak{I} \}. \text{ In particular, } \mathcal{I} \star \mathcal{N} = \{ A \subset X \mid int(A^*(\mathcal{I})) = \phi \}$ is an ideal containing both \mathcal{I} and \mathcal{N} and $\widetilde{\mathcal{I}} = \mathcal{I} \star \mathcal{N} \sim \tau$. Also, if \mathcal{F} is the family of all closed sets, $\langle \mathcal{I} \cap \mathcal{F} \rangle = \{A \subset X \mid \text{there exists } B \in \mathcal{I} \cap \mathcal{F} \text{ such that}$ $A \subset B$ = { $A \subset X \mid cl(A) \in \mathcal{I}$ } is an ideal generated by $\mathcal{I} \cap \mathcal{F}$ ([9]). The following lemmas will be useful in the sequel.

Lemma 1.1 ([14]). If (X, τ, \mathcal{I}) is an ideal space, then the following are equivalent.

- (a) \mathcal{I} is codense.
- (b) For every $A \in \tau$, $A \subset A^*$.
- (c) For every $A \in SO(X)$, $A \subset A^*$.
- (d) For every regularclosed set $F, F = F^{\star}$.

Proof. (a) and (b) are equivalent by Theorem 6.1 of [8].

(b) \Rightarrow (c). Suppose $A \in SO(X)$. Then there exists an open set H such that $H \subset A \subset cl(H)$. For any subset H of X, we have $H^* = cl(H^*) \subset cl(H)$, by Theorem 2.3(c) of [8]. Since H is open, $H \subset H^*$ and so $H^* = cl(H^*) = cl(H)$. Therefore, $A \subset cl(H) = cl(H^*) = H^* \subset A^*$ which implies that $A \subset A^*$.

(c) \Rightarrow (d). If F is regularclosed, then F is semiopen and closed. Since F is semiopen, by hypothesis, $F \subset F^*$. Since F is closed, F is τ^* -closed and so $F = cl^*(F) = F \cup F^*$, which implies that $F^* \subset F$. Hence $F = F^*$.

(d)
$$\Rightarrow$$
 (a) is clear.

Lemma 1.2 ([14]). Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. If $A \subset A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Proof. For any subset A of X, we have $A^* = cl(A^*) \subset cl(A)$, by Theorem 2.3(c) of [8]. $A \subset A^*$ implies that $cl(A) \subset cl(A^*)$ and so $A^* = cl(A^*) = cl(A)$. Clearly, for every subset A of X, $cl^*(A) \subset cl(A)$. Let $x \notin cl^*(A)$. Then there exists a τ^* - open set G containing x such that $G \cap A = \phi$. By Theorem 3.1 of [8], there exists $V \in \tau$ and $I \in \mathcal{I}$ such that $x \in V - I \subset G$.

$$\begin{split} G \cap A &= \phi \quad \Rightarrow \quad (V - I) \cap A = \phi \Rightarrow (V \cap A) - I = \phi \Rightarrow ((V \cap A) - I)^* = \phi \\ \Rightarrow \quad (V \cap A)^* - I^* = \phi \; [8, \; \text{Theorem2.3(f)}] \\ \Rightarrow \quad (V \cap A)^* = \phi \; [8, \; \text{Theorem2.3(h)}] \\ \Rightarrow \quad V \cap A^* = \phi \; [8, \; \text{Theorem2.3(g)}] \; \Rightarrow V \cap A = \phi. \end{split}$$

Since V is an open set containing $x, x \notin cl(A)$ and so $cl(A) \subset cl^*(A)$. Hence $cl(A) = cl^*(A)$.

Lemma 1.3 ([14]). If (X, τ, \mathcal{I}) is an ideal space such that $\mathcal{I} \subset \mathcal{N}$, then $A^*(\mathcal{N}) = (A^*(\mathcal{I}))^*(\mathcal{N})$ for every subset A of X.

Proof. Since $\mathcal{I} \subset \mathcal{N}$, $A^*(\mathcal{N}) \subset A^*(\mathcal{I}) \subset cl(A)$ by Theorem 2.3(b) of [8]. Since $A^*(\mathcal{N}) = cl(int(cl(A)))[8], cl(int(cl(A))) \subset A^*(\mathcal{I}) \subset cl(A)$ which implies that $cl(int(cl(A))) \subset cl(int(A^*(\mathcal{I}))) \subset cl(int(cl(A)))$. Therefore, $A^*(\mathcal{N}) = cl(int(A^*(\mathcal{I}))) = cl(int(cl(A^*(\mathcal{I})))) = (A^*(\mathcal{I}))^*(\mathcal{N})$.

Lemma 1.4 ([14]). If (X, τ, \mathcal{I}) is an ideal space, then $A^*(\mathcal{I} \star \mathcal{N}) = (A^*(\mathcal{I} \star \mathcal{N}))^*(\mathcal{N})$ for every subset A of X.

First, we prove the following Lemma 1.5.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal space. If $\mathcal{N} \subset \mathcal{I}$ and $\mathcal{I} \sim \tau$, then

- (i) $A^{\star}(\mathcal{I})$ is regularclosed for every subset A of X and
- (ii) $A^{\star}(\mathcal{I}) = (A^{\star}(\mathcal{I}))^{\star}(\mathcal{N})$ for every subset A of X.

Proof. (i) Since $\mathcal{N} \subset \mathcal{I}$, $A^*(\mathcal{I}) \subset A^*(\mathcal{N})$ by Theorem 2.3(b) of [8]. Therefore, $A^*(\mathcal{I}) \subset A^*(\mathcal{N}) = cl(int(cl(A))) \subset cl(A)$. Replacing A with $A^*(\mathcal{I})$, we have $(A^*(\mathcal{I}))^*(\mathcal{I}) \subset cl(int(cl(A^*(\mathcal{I})))) \subset cl(A^*(\mathcal{I}))$. Since $\mathcal{I} \sim \tau$, $(A^*(\mathcal{I}))^*(\mathcal{I}) = A^*(\mathcal{I})$ by Theorem 4.6(b) and Theorem 2.3(d and f) of [8]. Since $A^*(\mathcal{I})$ is closed, we have $A^*(\mathcal{I}) \subset cl(int(A^*(\mathcal{I}))) \subset A^*(\mathcal{I})$ and so $A^*(\mathcal{I}) = cl(int(A^*(\mathcal{I})))$. Therefore, $A^*(\mathcal{I})$ is regularclosed. (ii) Since $\tau \cap \mathcal{N} = \{\phi\}$ and $A^*(\mathcal{I})$ is regularclosed, by the above Lemma 1.1(d), $A^*(\mathcal{I}) = (A^*(\mathcal{I}))^*(\mathcal{N})$.

Proof of Lemma 1.4. By Theorem 4.11 of [8], $\mathcal{N} \sim \tau$. By Theorem 3.1 of [9], $\mathcal{I} \star \mathcal{N} \sim \tau$. Since $\mathcal{N} \subset \mathcal{I} \star \mathcal{N}$, by the above Lemma 1.5, $A^{\star}(\mathcal{I} \star \mathcal{N})$ is regularclosed and $A^{\star}(\mathcal{I} \star \mathcal{N}) = (A^{\star}(\mathcal{I} \star \mathcal{N}))^{\star}(\mathcal{N})$.

2. Completely codense ideals

An ideal \mathcal{I} on a space (X, τ) is said to be *codense* ([4]) if $\tau \cap \mathcal{I} = \{\phi\}$. An ideal \mathcal{I} is said to be *completely codense* ([4]) if $PO(X) \cap \mathcal{I} = \{\phi\}$. An ideal \mathcal{I} is said to be *regular* ([3]) if $RO(X) \cap \mathcal{I} = \{\phi\}$. An ideal \mathcal{I} is said to be *normal* ([3]) if $\mathcal{N} \subset \mathcal{I}$ and \mathcal{I} is regular. Every completely codense ideal is codense and every codense ideal is regular. The converse implications are not true. The following theorem gives characterizations of completely codense ideals.

Theorem 2.1. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

- (a) \mathcal{I} is completely codense.
- (b) $A \subset A^*$ for every $A \in PO(X)$.
- (c) $pint(A) = \phi$ for every $A \in \mathcal{I}$.
- (d) Every dense set is \mathcal{I} -dense.

Proof. (a) \Rightarrow (b). Suppose $A \in PO(X)$ and $x \notin A^*$. Then there exists an open set G containing x such that $G \cap A \in \mathcal{I}$. Since $A \in PO(X)$, $G \cap A \in PO(X)$ and so by hypothesis, $G \cap A = \phi$ which implies that $x \notin A$.

(b) \Rightarrow (c). Let $A \in \mathcal{I}$ such that $pint(A) \neq \phi$. Then there exists a non-empty preopen set G such that $G \subset A$ and so $G^* \subset A^* = \phi$. Since $G \subset G^*$, $G = \phi$ which is a contradiction. Therefore, $pint(A) = \phi$.

(c) \Rightarrow (a). Let $A \in PO(X) \cap \mathcal{I}$. Then $A \in PO(X) \Rightarrow A \subset int(cl(A))$. $A \in \mathcal{I}$ $\Rightarrow pint(A) = \phi \Rightarrow A \cap int(cl(A)) = \phi \Rightarrow A = \phi$.

(a) and (d) are equivalent by Theorem 4.10 of [4].

Corollary 2.2. Let (X, τ, \mathcal{I}) be an ideal space with a completely codense ideal \mathcal{I} . If $A \in PO(X)$, then

- (a) $A^{\star}(\mathcal{I}) = A^{\star}(\mathcal{N})$ and $A^{\star}(\mathcal{I})$ is regularclosed, and
- (b) $cl(A) = cl^{\star}(A) = cl_{\alpha}(A).$

Proof. (a) If $A \in PO(X)$, by Theorem 2.1(b), $A \subset A^* \subset cl(A)$ and so $A^* = cl(A)$ which implies that A^* is regularclosed. Since $A \subset int(cl(A))$, we have $cl(A) \subset cl(int(cl(A))) \subset cl(A)$ and so $A^* = cl(A) = cl(int(cl(A))) = A^*(\mathcal{N})$.

(b) $cl(A) = cl^{*}(A)$ by Theorem 2.1(b) and Lemma 1.2. Therefore, $cl^{*}(A) = A \cup A^{*}(\mathcal{I}) = A \cup A^{*}(\mathcal{N}) = cl_{\alpha}(A)$.

Theorem 2.3. Let (X, τ, \mathcal{I}) be an ideal space. If $\mathcal{N} \subset \mathcal{I}$, then the following are equivalent.

- (a) \mathcal{I} is codense.
- (b) \mathcal{I} is regular.
- *Proof.* (a) \Rightarrow (b) is clear.

(b) \Rightarrow (a). Let $G \in \tau \cap \mathcal{I}$. $G \in \tau \Rightarrow int(cl(G)) = G \cup (int(cl(G)) - G) \in \mathcal{I} \cup \mathcal{N} = \mathcal{I}$. Since $int(cl(G)) \in \operatorname{RO}(\mathbf{X})$, $int(cl(G)) = \phi$ and so $G = \phi$. Hence \mathcal{I} is codense. \Box

Corollary 2.4. Every normal ideal is codense.

In general, codense ideals need not be normal. If (X, τ) is a space with a nonempty nowhere dense set, then the ideal $\{\phi\}$ is codense but not normal. But for any codense ideal \mathcal{I} , it is clear that $\tilde{\mathcal{I}}$ is always normal. Since in open hereditarily irresolvable(o.h.i) spaces [1, Theorem 3.7] or in submaximal spaces (i.e., dense sets are open)[4, Theorem 4.15], codense ideals are completely codense and an ideal \mathcal{I} is completely codense if and only if $\mathcal{I} \subset \mathcal{N}$ [4, Theorem 4.13], the following Corollary 2.5 follows from Corollary 2.4.

Corollary 2.5. If X is an o.h.i space or a submaximal space, then an ideal \mathcal{I} is normal if and only if $\mathcal{I} = \mathcal{N}$.

Theorem 2.6. Let (X, τ, \mathcal{I}) be an ideal space. Then

- (a) $\{\phi\} \star \mathcal{I} = \langle \mathcal{I} \cap \mathcal{F} \rangle.$
- (b) If \mathcal{I} is regular, then $\mathfrak{T} = \langle \mathcal{I} \cap \mathcal{F} \rangle$ is completely codense and the converse holds, if $\mathcal{N} \subset \mathcal{I}$.

Proof. (a). $A \in \{\phi\} \star \mathcal{I} \Leftrightarrow A^{\star}(\{\phi\}) \in \mathcal{I} \Leftrightarrow cl(A) \in \mathcal{I} \Leftrightarrow A \in \langle \mathcal{I} \cap \mathcal{F} \rangle$.

(b) Suppose $A \in PO(X) \cap \mathfrak{F}$. $A \in PO(X) \Rightarrow A \subset int(cl(A))$. $A \in \mathfrak{F} \Rightarrow cl(A) \in \mathcal{I} \Rightarrow int(cl(A)) \in \mathcal{I}$. Since \mathcal{I} is regular, $int(cl(A)) = \phi$ which implies that $A = \phi$. Therefore, \mathfrak{F} is completely codense.

Conversely, suppose \Im is completely codense and $\mathcal{N} \subset \mathcal{I}$. If $A \in RO(X) \cap \mathcal{I}$, then $A \in RO(X)$ and $A \in \mathcal{I}$. $A \in RO(X)$ implies that $cl(A) - A \in \mathcal{N}$ and so $cl(A) = (cl(A) - A) \cup A \in \mathcal{I} \cup \mathcal{N} = \mathcal{I}$. Therefore, $A \in \Im$. Since $A \in RO(X)$, $A \in$ PO(X) and so $A \in PO(X) \cap \Im$ which implies that $A = \phi$. Hence \mathcal{I} is regular. \Box

The following example shows that \mathcal{I} need not be regular even if $\mathfrak{I} = \langle \mathcal{I} \cap \mathcal{F} \rangle$ is completely codense.

Example 2.7. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. If $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$, then $\mathfrak{I} = \langle \mathcal{I} \cap \mathcal{F} \rangle = \{\phi\}$ is completely codense but \mathcal{I} is not regular, since $\{a, b\}$ is a regularopen set which is an element of \mathcal{I} .

The largest ideal contained in the ring of closed subsets of a space (X, τ) is called the *characteristic* ideal [16, Page 175], usually denoted by $\Gamma(X, \tau)$ or simply

 Γ . The following theorem deals with the extension of completely codense ideals.

Theorem 2.8. Let (X, τ) be a space with ideals \mathcal{I} and \mathfrak{FI} and $\mathfrak{$

The following Corollary 2.9 follows from the fact that \mathcal{N} is completely codense and $\mathcal{I} \subset \mathcal{I} \cup \mathcal{N} \subset \mathcal{I} \star \mathcal{N}$ for any arbitrary ideal \mathcal{I} .

Corollary 2.9. Let (X, τ, \mathcal{I}) be an ideal space. Then

- (a) \mathcal{I} is completely codense if and only if $\mathcal{I} \star \mathcal{N}$ is completely codense, and
- (b) \mathcal{I} is completely codense if and only if $\mathcal{I} \cup \mathcal{N}$ is completely codense.

The following Example 2.10 shows that \Im need not be completely codense, if $\mathcal{I} \star \Im$ is completely codense but clearly \Im is completely codense, if $\Im \subset \mathcal{I}$.

Example 2.10. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. If $\mathcal{I} = \{\phi, \{c\}\}$ and $\mathfrak{T} = \{\phi, \{a\}\}$, then \mathcal{I} and $\mathcal{I} \star \mathfrak{T} = \{\phi, \{c\}\}$ are completely codense ideals but \mathfrak{T} is regular which is not completely codense.

3. Banach category theorem

A space is said to *resolvable* ([7]) if X is the union of two disjoint dense subsets. An ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I} -resolvable ([4]) if X has two disjoint \mathcal{I} dense subsets. Every resolvable space is \mathcal{N} -resolvable and if \mathcal{I} and \mathfrak{F} are ideals with $\mathcal{I} \subset \mathfrak{F}$ and X is \mathfrak{F} -resolvable, then X is \mathcal{I} -resolvable. \mathcal{I} -resolvable spaces are introduced and studied by Dontchev, Ganster and Rose in [4] and they raised the question: If X is \mathcal{I} -resolvable, then is X ($\mathcal{I} \cup \mathcal{N}$)-resolvable?. To answer this question, we need the following theorem.

Theorem 3.1. Let (X, τ, \mathcal{I}) be an ideal space. If $\lambda = \mathcal{I} \cap \mathcal{N}$ and $\beta = \mathcal{I} \cup \mathcal{N}$, then for every subset A of X,

- (a) $(A^{\star}(\mathcal{I}))^{\star}(\mathcal{N}) = (A^{\star}(\mathcal{I} \star \mathcal{N}))^{\star}(\mathcal{N}) = (A^{\star}(\tilde{\mathcal{I}}))^{\star}(\mathcal{N}) = A^{\star}(\tilde{\mathcal{I}}).$
- (b) $(A^{\star}(\mathcal{I}))^{\star}(\mathcal{N}) = (A^{\star}(\beta))^{\star}(\mathcal{N}).$
- (c) $(A^{\star}(\beta))^{\star}(\mathcal{N}) \subset A^{\star}(\mathcal{N}).$
- (d) $A^{\star}(\mathcal{N}) = (A^{\star}(\lambda))^{\star}(\mathcal{N}).$

Proof. (a) Let $x \notin A^*(\tilde{\mathcal{I}})$. Then there exists an open set G containing x such that $G \cap A \in \tilde{\mathcal{I}}$ and so $(G \cap A)^*(\mathcal{I}) \in \mathcal{N}$ which implies that $G \cap A^*(\mathcal{I}) \in \mathcal{N}$. Hence $G \cap (A^*(\mathcal{I}))^*(\mathcal{N}) = \phi$ which implies that $x \notin (A^*(\mathcal{I}))^*(\mathcal{N})$. Therefore, $(A^*(\mathcal{I}))^*(\mathcal{N}) \subset A^*(\tilde{\mathcal{I}}) \subset A^*(\mathcal{I})$ and so $((A^*(\mathcal{I}))^*(\mathcal{N}))^*(\mathcal{N}) \subset (A^*(\tilde{\mathcal{I}}))^*(\mathcal{N}) \subset (A^*(\mathcal{I}))^*(\mathcal{N})$. Since $\mathcal{N} \sim \tau$, it follows that $(A^*(\tilde{\mathcal{I}}))^*(\mathcal{N}) = (A^*(\mathcal{I}))^*(\mathcal{N})$. $(A^*(\tilde{\mathcal{I}}))^*(\mathcal{N}) = A^*(\tilde{\mathcal{I}})$ by Lemma 1.4.

(b) Since $\mathcal{I} \subset \beta \subset \tilde{\mathcal{I}}$, we have $A^*(\tilde{\mathcal{I}}) \subset A^*(\beta) \subset A^*(\mathcal{I})$ and so $(A^*(\tilde{\mathcal{I}}))^*(\mathcal{N}) \subset (A^*(\beta))^*(\mathcal{N}) \subset (A^*(\mathcal{I}))^*(\mathcal{N}) = (A^*(\tilde{\mathcal{I}}))^*(\mathcal{N})$ by (a). Therefore, $(A^*(\tilde{\mathcal{I}}))^*(\mathcal{N}) = (A^*(\beta))^*(\mathcal{N}) = (A^*(\mathcal{I}))^*(\mathcal{N})$.

(c) Since $\mathcal{N} \subset \beta$, $A^*(\beta) \subset A^*(\mathcal{N})$ and so $(A^*(\beta))^*(\mathcal{N}) \subset (A^*(\mathcal{N}))^*(\mathcal{N}) = A^*(\mathcal{N})$, since $\mathcal{N} \sim \tau$.

(d) Since $\lambda \subset \mathcal{N}$, it follows from Lemma 1.3.

Theorem 3.2. An ideal space (X, τ, \mathcal{I}) is \mathcal{I} -resolvable if and only if it is $\tilde{\mathcal{I}}$ -resolvable.

Proof. Suppose X is \mathcal{I} -resolvable. Let A be any \mathcal{I} -dense subset of X. Then $A^{\star}(\mathcal{I}) = X$ and so $(A^{\star}(\mathcal{I}))^{\star}(\mathcal{N}) = X^{\star}(\mathcal{N}) = X$. By Theorem 2.1(a), $A^{\star}(\tilde{\mathcal{I}}) = X$. It follows that X is $\tilde{\mathcal{I}}$ -resolvable. Since $\mathcal{I} \subset \mathcal{I} \star \mathcal{N}$, the converse is clear. \Box

Corollary 3.3. An ideal space (X, τ, \mathcal{I}) is \mathcal{I} -resolvable if and only if it is $(\mathcal{I} \cup \mathcal{N})$ -resolvable.

In the remaining part of this section, we generalize the well known Banach Category Theorem. For topological spaces, Kuratowski ([10]) proved that every topology is compatible with the σ -ideal \mathcal{M} of meager sets. Jankovic and Hamlett ([9]) extended the result of Kuratowski by proving the following:

Theorem A (Generalized Banach Category Theorem). For any ideal space $(X, \tau, \mathcal{I}), \ (\tilde{\mathcal{I}})_{\sigma} \sim \tau.$

Theorem 3.4. Let (X, τ, \mathcal{I}) be an ideal space and $\beta = \mathcal{I} \cup \mathcal{N}$. Then

- (a) $\beta \star \mathcal{N} = \tilde{\mathcal{I}}$
- (b) $\beta \star \mathcal{N} \sim \tau$ and
- (c) $A^{\star}(\tilde{\mathcal{I}}) = A^{\star}(\beta \star \mathcal{N}) = (A^{\star}(\beta \star \mathcal{N}))^{\star}(\mathcal{N})$ for every subset A of X.

Proof. (a) $A \in \mathcal{I} \star \mathcal{N} \Rightarrow A^{\star}(\mathcal{I}) \in \mathcal{N} \Rightarrow A^{\star}(\beta) \in \mathcal{N}$, since $\mathcal{I} \subset \beta \Rightarrow A \in \beta \star \mathcal{N}$. Therefore, $\mathcal{I} \star \mathcal{N} \subset \beta \star \mathcal{N}$. $A \in \beta \star \mathcal{N} \Rightarrow A^{\star}(\beta) \in \mathcal{N} \Rightarrow A^{\star}(\tilde{\mathcal{I}}) \in \mathcal{N} \Rightarrow A^{\star}(\tilde{\mathcal{I}}) \in \mathcal{N} \Rightarrow (A^{\star}(\mathcal{I}))^{\star}(\mathcal{N}) = \phi$ from Theorem 3.1(a). Since $\mathcal{N} \sim \tau$, $A^{\star}(\mathcal{I}) \in \mathcal{N}$ which implies that $A \in \mathcal{I} \star \mathcal{N}$. Therefore, $\beta \star \mathcal{N} \subset \mathcal{I} \star \mathcal{N}$. Hence $\beta \star \mathcal{N} = \mathcal{I} \star \mathcal{N}$.

- (b) follows from the fact that $\mathcal{I} \star \mathcal{N} \sim \tau$.
- (c) follows from Lemma 1.4.

Now, using Theorem 3.4(a), we can generalize the Banach Category Theorem as follows.

205

Theorem 3.5. Let (X, τ, \mathcal{I}) be an ideal space. If $\beta = \mathcal{I} \cup \mathcal{N}$, then $(\tilde{\beta})_{\sigma} \sim \tau$.

Theorem 3.6. If (X, τ, \mathcal{I}) is an ideal space, \mathcal{I} is compatible and $\beta = \mathcal{I} \cup \mathcal{N}$, then $\beta = \beta \star \mathcal{N}$.

Proof. Clearly, $\beta \subset \beta \star \mathcal{N}$. If $A \in \beta \star \mathcal{N}$, then $A^{\star}(\beta) \in \mathcal{N}$ and so $(A^{\star}(\beta))^{\star}(\mathcal{N}) = \phi$. By Theorem 3.1(b), $(A^{\star}(\mathcal{I}))^{\star}(\mathcal{N}) = \phi$ which implies that $A^{\star}(\mathcal{I}) \in \mathcal{N}$ and so $A \cap A^{\star}(\mathcal{I}) \in \mathcal{N}$. Since $\mathcal{I} \sim \tau$, $A - A^{\star}(\mathcal{I}) \in \mathcal{I}$. Hence, $A = (A - A^{\star}(\mathcal{I})) \cup (A \cap A^{\star}(\mathcal{I})) \in \mathcal{I} \cup \mathcal{N} = \beta$. This completes the proof. \Box

Corollary 3.7. Let (X, τ, \mathcal{I}) be an ideal space. Then, $\mathcal{N} \subset \mathcal{I}$ and $\mathcal{I} \sim \tau \Leftrightarrow \mathcal{I} = \mathcal{I} \star \mathcal{N}$ [14, Theorem 9(a)].

Corollary 3.8. Let (X, τ, \mathcal{I}) be an ideal space. If $\beta = \mathcal{I} \cup \mathcal{N}$ and $\mathcal{I} \sim \tau$, then $\beta = \beta \star \mathcal{N} = \mathcal{I} \star \mathcal{N}$ and so $\beta \sim \tau$.

Proof. Follows from Theorems 3.4 and 3.6.

Using Corollary 3.8, we can also generalize the Banach Category Theorem as follows.

Theorem 3.9. If (X, τ, \mathcal{I}) is an ideal space, $\beta = \mathcal{I} \cup \mathcal{N}$ and $\mathcal{I} \sim \tau$, then $\beta_{\sigma} \sim \tau$.

If (X, τ, \mathcal{I}) is an ideal space and $\mathcal{I} \sim \tau$, then clearly $\mathcal{I} \star \mathcal{I} = \mathcal{I}$. Also for an arbitrary ideal $\mathcal{I}, \tilde{\mathcal{I}} \star \mathcal{N} = \tilde{\mathcal{I}}$ [13, Theorem 4.1]. Since $\tilde{\mathcal{I}} \sim \tau, \tilde{\mathcal{I}} \star \tilde{\mathcal{I}} = \tilde{\mathcal{I}}$. In the following Theorem 3.10, we prove that the extension of a compatible ideal \mathcal{I} via $\tilde{\mathcal{I}}$ is $\tilde{\mathcal{I}}$.

Theorem 3.10. If (X, τ, \mathcal{I}) is an ideal space and $\mathcal{I} \sim \tau$, then $\mathcal{I} \star \tilde{\mathcal{I}} = \tilde{\mathcal{I}}$. *Proof.* $\mathcal{I} \star \tilde{\mathcal{I}} = \{A \mid A^*(\mathcal{I}) \in \tilde{\mathcal{I}}\} = \{A \mid (A^*(\mathcal{I}))^*(\mathcal{I}) \in \mathcal{N}\} = \{A \mid A^*(\mathcal{I}) \in \mathcal{N}\},\$ since $\mathcal{I} \sim \tau = \{A \mid A \in \mathcal{I} \star \mathcal{N}\} = \tilde{\mathcal{I}}.$

We have the following generalization of Banach Category Theorem using Theorem 3.10.

Theorem 3.11. If (X, τ) is a space with a compatible ideal \mathcal{I} , then the countable extension of the compatible extension of \mathcal{I} via $\tilde{\mathcal{I}}$ is always compatible with τ i.e., $(\mathcal{I} \star \tilde{\mathcal{I}})_{\sigma} \sim \tau$.

The well known Banach Category Theorem (Corollary 3.12 below) is obtained as an immediate corollary to Theorems 3.5, 3.9 and 3.11, if we take $\mathcal{I} = \{\phi\}$.

Corollary 3.12. Let (X, τ) be a space and let \mathcal{M} denote the ideal of meager sets. Then $\mathcal{M} \sim \tau$.

4. \mathcal{I} -locally closed subsets

A subset A of a space (X, τ) is *locally closed* ([10]) if A is the intersection of an open set and a closed set. Locally closed sets are further investigated by Ganster and Reilly in [6]. In 1999, Dontchev ([2]) introduced \mathcal{I} -locally closed subsets in

206

an ideal space. A subset A of an ideal space (X, τ, \mathcal{I}) is called \mathcal{I} -locally closed if $A = U \cap V$, where $U \in \tau$ and V is \star -perfect. Clearly, in the case of the minimal ideal, the concepts \mathcal{I} -locally closed and locally closed are equivalent. It is clear that open as well as closed sets need not be \mathcal{I} -locally closed. If (X, τ, \mathcal{I}) is an ideal space where \mathcal{I} -is not codense, then X is not \mathcal{I} -locally closed. But if \mathcal{I} is codense, then every open set is \mathcal{I} -locally closed [2, Proposition 4.1] and from Lemma 1.1, it is clear that every regularclosed set is \mathcal{I} -locally closed. The following theorem gives characterizations of \mathcal{I} -locally closed subsets.

Theorem 4.1. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent.

- (a) A is \mathcal{I} -locally closed.
- (b) $A = G \cap A^*$ for some open set G.
- (c) $A \subset A^*$ and $A^* A$ is closed.
- (d) $A \subset A^*$ and $A \cup (X A^*)$ is open.
- (e) $A \subset A^*$ and $A \subset int(A \cup (X A^*))$.

Proof. (a) \Rightarrow (b). Suppose $A = U \cap V$ where $U \in \tau$ and $V = V^*$. Then $A \subset V$ and so $A^* \subset V^* = V$. Also, $A^* = (U \cap V)^* \supset U \cap V^* = U \cap V = A$ and so $A = A \cap A^* = (U \cap V) \cap A^* = U \cap (V \cap A^*) = U \cap A^*$.

(b) \Rightarrow (c). Suppose $A = G \cap A^*$ for some open set G. Clearly, $A \subset A^*$ and $A^* - A = A^* \cap (X - A) = A^* \cap (X - (G \cap A^*)) = A^* \cap (X - G)$. Since A^* is closed, $A^* - A$ is closed.

(c) \Rightarrow (d). $A^* - A$ is closed $\Rightarrow A^* \cap (X - A)$ is closed $\Rightarrow X - (A^* \cap (X - A))$ is open $\Rightarrow A \cup (X - A^*)$ is open.

(d) \Rightarrow (e) is clear.

(e) \Rightarrow (a). $X - A^* = int(X - A^*) \subset int(A \cup (X - A^*))$ and so $A \cup (X - A^*)$ is open, by hypothesis. Since $A = (A \cup (X - A^*)) \cap A^*$, A is \mathcal{I} -locally closed. \Box

Corollary 4.2. If (X, τ, \mathcal{I}) is an ideal space and $A \subset X$ is \mathcal{I} -locally closed, then

- (a) A is \star -dense in itself
- (b) A^* is \star -perfect, and
- (c) $cl(A) = cl^{\star}(A) = A^{\star}$.

Proof. (a) follows from Theorem 4.1, (b) follows from (a) and the fact that $(A^*)^* \subset A^*$ ([8]) and (c) follows from Lemma 1.2.

In the following theorems, we give the relation of \star -perfect, locally closed and \star -dense in itself subsets with \mathcal{I} -locally closed subsets.

Theorem 4.3. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. If A is *-perfect, then

A is \mathcal{I} -locally closed. The converse is true, if A is τ^* -closed.

Proof. If A is *-perfect, then $A = A^*$ and so $A = X \cap A = X \cap A^*$ which implies that A is \mathcal{I} -locally closed. Conversely, if A is \mathcal{I} -locally closed, then $A \subset A^*$. A is τ^* -closed implies that $A^* \subset A$. Hence $A = A^*$.

Theorem 4.4. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then A is \mathcal{I} -locally closed if and only if A is locally closed and A is \star -dense in itself.

Proof. If A is \mathcal{I} -locally closed, then A is *-dense in itself and $A = G \cap A^*$ for some $G \in \tau$. Since A^* is closed, A is locally closed. Conversely, if A is locally closed, then $A = G \cap F$ where $G \in \tau$ and F is closed. $A \subset F \Rightarrow A^* \subset F \Rightarrow A^* \cap F = A^*$. Now A is *-dense in itself implies that $A \subset A^*$ and so $A = A \cap A^* = (G \cap F) \cap A^* = G \cap (F \cap A^*) = G \cap A^*$. Therefore, A is \mathcal{I} -locally closed.

Theorem 4.5. Let (X, τ, \mathcal{I}) be a T_1 ideal space and $A \subset X$. If A is discrete and \star -dense in itself, then A is \mathcal{I} -locally closed.

Proof. A is locally closed by Proposition 2(i) of [6] and so A is \mathcal{I} -locally closed by Theorem 4.4.

The following example shows that \mathcal{I} -locally closed set need not be \star -perfect and locally closed set need not be \mathcal{I} -locally closed. Also, it shows that the complement of an \mathcal{I} -locally closed set need not be \mathcal{I} -locally closed.

Example 4.6. Consider the ideal space (X, τ, \mathcal{I}) of Example 2.7. If $A = \{c\}$, then A is \mathcal{I} -locally closed but not \star -perfect. If $B = \{a, b, d\}$, then B is locally closed but not \mathcal{I} -locally closed. Since X - A = B, the complement of an \mathcal{I} -locally closed set need not be \mathcal{I} -locally closed.

The following example shows that \star -dense in itself set need not be \mathcal{I} -locally closed.

Example 4.7. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}, \{d\}, \{c, d\}\}$. If $A = \{a\}$, then A is \star -dense in itself but not \mathcal{I} -locally closed.

Recall that a dense subset of a topological space is open if and only if it is locally closed. As a generalization of this result to \mathcal{I} -locally closed sets, we have the following theorem.

Theorem 4.8. Let (X, τ, \mathcal{I}) be an ideal space and A be an \mathcal{I} -dense subset of X. Then A is open if and only if A is \mathcal{I} -locally closed.

Proof. Suppose A is \mathcal{I} -dense and open. Then $A = A \cap X = A \cap A^*$ and so A is \mathcal{I} -locally closed. Conversely, if A is \mathcal{I} -locally closed and \mathcal{I} -dense, then $A = G \cap A^*$ where $G \in \tau$ which implies $A = G \cap X = G$ and so A is open. \Box

Acknowledgement. The authors sincerely thank Prof. M. Ganster for sending some of his reprints which are helpful for the preparation of this paper.

References

- Biswanath Garai and Chhanda Bandyopadhyay, *I-dense sets and I-o.h.i. spaces*, Kyungpook Math. J., **41**(2001), 351-359.
- [2] J. Dontchev, Idealization of Ganster Reilly decomposition theorems, Math. GN/9901017, 5, Jan. 1999(Internet).
- [3] J. Dontchev and M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach category Theorem, Acta. Math. Hung., 88(2000), 53-58.
- [4] J. Dontchev, M. Ganster and D. Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [5] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27(2)(1987), 135-143.
- M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat., J. Math. and Math. Sci., 12(1989), 417-424.
- [7] E. Hewitt, A problem of set theoretic topology, Duke Math. J., 10(1943), 309-333.
- [8] D. Jankovic and T. R. Hamlett, New Topologies from old via Ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [9] D. Jankovic and T. R. Hamlett, *Compatible Extensions of Ideals*, Boll. U.M.I., (7)6-B(1992), 453-465.
- [10] K. Kuratowski, Topology, Academic Press, New York, I(1966).
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] O. Njastad, On some Classes of Nearly Open Sets, Pacific J. Math., 15(1965), 961-970.
- [13] D. A. Rose and T. R. Hamlett, On one-point *I*-compactification and Local *I*compactness, Math. Slovaca, 42(1992), 359-369.
- [14] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108(4) (To appear).
- [15] R. Vaidyanathaswamy, The Localization Theory in Set Topology, Proc. Indian Acad. Sci. Math. Sci., 20(1945), 51-61.
- [16] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.