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Abstract. An ideal space is I-resolvable if it has two disjoint I-dense subsets. We an-

swer the question: If X is I-resolvable, then is X (I ∪ N )-resolvable?, posed by Dontchev,

Ganster and Rose. We give three generalizations of the well known Banach Category

Theorem and deduce the Banach category Theorem as a corollary. Characterizations of

completely codense ideals and I-locally closed sets are given and their properties are dis-

cussed.

1. Introduction and preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski
([10]) and Vaidyanathaswamy ([16]). An ideal I on a topological space (X, τ) is
a collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I
and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. A σ-ideal is an ideal which sat-
isfies (iii) If Ai ∈ I for i ∈ N, then ∪{

Ai | i ∈ N} ∈ I, where N is the set of
all natural numbers. Given a topological space (X, τ) with an ideal I on X and
if ℘(X) is the set of all subsets of X, a set operator ()?:℘(X)→ ℘(X), called the
local function ([10]) of A with respect to τ and I, is defined as follows: for A ⊂ X,
A?(I, τ) =

{
x ∈ X | U ∩A 6∈ I for every U ∈ τ(x)

}
where τ(x) =

{
U ∈ τ | x ∈ U

}
.

A Kuratowski closure operator cl?() for a topology τ∗(I, τ), called the ?-topology,
finer than τ is defined by cl?(A) = A∪A?(I, τ) ([15]). When there is no chance for
confusion, we will simply write A? for A?(I, τ) and τ? or τ?(I) for τ?(I, τ). If I is
an ideal on X, then (X, τ, I) is called an ideal space. A subset A of an ideal space
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(X, τ, I) is said to be I-open ([9]) if A ⊂ int(A?). A is said to be I-dense ([4]) if
A? = X. Recall that A is said to be ?-dense in itself if A ⊂ A?, A is τ?-closed
if A? ⊂ A ([8]) and A is ?-perfect if A = A?. N is the ideal of all nowhere dense
subsets in (X, τ) and M is the ideal of all first category(meager) subsets in (X, τ).
If I is any ideal, then the set of all countable union of members of I is a σ-ideal
and is denoted by Iσ. Iσ is called the countable extension of I. Clearly, M = Nσ.

By a space, we always mean a topological space (X, τ) with no separation
properties assumed. If A ⊂ X, cl(A) and int(A) will, respectively, denote the
closure and interior of A in (X, τ) and cl?(A) and int?(A) will, respectively, denote
the closure and interior of A in (X, τ?). A subset A of a space (X, τ) is an α-
set ([12]) if A ⊂ int(cl(int(A))). The family of all α-sets in (X, τ) is denoted by
τα. τα is a topology on X which is finer than τ . The closure of A in (X, τα) is
denoted by clα(A). An open subset A of a space (X, τ) is said to be regularopen if
A = int(cl(A)). The complement of a regularopen set is regularclosed. The family
of all regularopen subsets of (X, τ) is denoted by RO(X, τ) or simply RO(X). A
subset A of a space (X, τ) is said to be preopen ([11]) if A ⊂ int(cl(A)). The family
of all preopen sets is denoted by PO(X, τ) or simply, PO(X). The largest preopen
set contained in A is called the preinterior of A and is denoted by pint(A) and
pint(A) = A ∩ int(cl(A)). A is preopen if and only if there is a regularopen set
G such that A ⊂ G and cl(A) = cl(G) [5, Proposition 2.1]. An ideal I in a space
(X, τ) is said to be compatible with respect to τ ([8])(supercompact [15]), denoted
by I ∼ τ , if for every subset A of X and for each x ∈ A, there exists a neighborhood
U of x such that U ∩ A ∈ I, then A ∈ I. Given a space (X, τ) and ideals I and
= on X, the extension of I via = ([9]), denoted by I ? =, is the ideal given by
I ? = =

{
A ⊂ X | A?(I) ∈ =}

. In particular, I ?N =
{
A ⊂ X | int(A?(I)) = φ

}

is an ideal containing both I and N and Ĩ = I ? N ∼ τ . Also, if F is the
family of all closed sets, 〈I ∩ F〉 =

{
A ⊂ X | there exists B ∈ I ∩ F such that

A ⊂ B
}

=
{
A ⊂ X | cl(A) ∈ I}

is an ideal generated by I ∩F ([9]). The following
lemmas will be useful in the sequel.

Lemma 1.1 ([14]). If (X, τ, I) is an ideal space, then the following are equivalent.

(a) I is codense.

(b) For every A ∈ τ , A ⊂ A?.

(c) For every A ∈ SO(X), A ⊂ A?.

(d) For every regularclosed set F , F = F ?.

Proof. (a) and (b) are equivalent by Theorem 6.1 of [8].

(b) ⇒ (c). Suppose A ∈ SO(X). Then there exists an open set H such that
H ⊂ A ⊂ cl(H). For any subset H of X, we have H? = cl(H?) ⊂ cl(H), by
Theorem 2.3(c) of [8]. Since H is open, H ⊂ H? and so H? = cl(H?) = cl(H).
Therefore, A ⊂ cl(H) = cl(H?) = H? ⊂ A? which implies that A ⊂ A?.
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(c) ⇒ (d). If F is regularclosed, then F is semiopen and closed. Since F
is semiopen, by hypothesis, F ⊂ F ?. Since F is closed, F is τ?-closed and so
F = cl?(F ) = F ∪ F ?, which implies that F ? ⊂ F . Hence F = F ?.

(d) ⇒ (a) is clear. ¤

Lemma 1.2 ([14]). Let (X, τ, I) be an ideal space and A ⊂ X. If A ⊂ A?, then
A? = cl(A?) = cl(A) = cl?(A).

Proof. For any subset A of X, we have A? = cl(A?) ⊂ cl(A), by Theorem 2.3(c) of
[8]. A ⊂ A? implies that cl(A) ⊂ cl(A?) and so A? = cl(A?) = cl(A). Clearly, for
every subset A of X, cl?(A) ⊂ cl(A). Let x 6∈ cl?(A). Then there exists a τ?- open
set G containing x such that G ∩A = φ. By Theorem 3.1 of [8], there exists V ∈ τ
and I ∈ I such that x ∈ V − I ⊂ G.

G ∩A = φ ⇒ (V − I) ∩A = φ ⇒ (V ∩A)− I = φ ⇒ ((V ∩A)− I)? = φ

⇒ (V ∩A)? − I? = φ [8, Theorem2.3(f)]
⇒ (V ∩A)? = φ [8, Theorem2.3(h)]
⇒ V ∩A? = φ [8, Theorem2.3(g)] ⇒ V ∩A = φ.

Since V is an open set containing x, x 6∈ cl(A) and so cl(A) ⊂ cl?(A). Hence
cl(A) = cl?(A). ¤

Lemma 1.3 ([14]). If (X, τ, I) is an ideal space such that I ⊂ N , then
A?(N ) = (A?(I))?(N ) for every subset A of X.

Proof. Since I ⊂ N , A?(N ) ⊂ A?(I) ⊂ cl(A) by Theorem 2.3(b) of [8].
Since A?(N ) = cl(int(cl(A)))[8], cl(int(cl(A))) ⊂ A?(I) ⊂ cl(A) which implies
that cl(int(cl(A))) ⊂ cl(int(A?(I))) ⊂ cl(int(cl(A))). Therefore, A?(N ) =
cl(int(A?(I))) = cl(int(cl(A?(I)))) = (A?(I))?(N ). ¤

Lemma 1.4 ([14]). If (X, τ, I) is an ideal space, then A?(I?N ) = (A?(I?N ))?(N )
for every subset A of X.

First, we prove the following Lemma 1.5.

Lemma 1.5. Let (X, τ, I) be an ideal space. If N ⊂ I and I ∼ τ , then

(i) A?(I) is regularclosed for every subset A of X and

(ii) A?(I) = (A?(I))?(N ) for every subset A of X.

Proof. (i) Since N ⊂ I, A?(I) ⊂ A?(N ) by Theorem 2.3(b) of [8]. Therefore,
A?(I) ⊂ A?(N ) = cl(int(cl(A))) ⊂ cl(A). Replacing A with A?(I), we have
(A?(I))?(I) ⊂ cl(int(cl(A?(I)))) ⊂ cl(A?(I)). Since I ∼ τ , (A?(I))?(I) = A?(I)
by Theorem 4.6(b) and Theorem 2.3(d and f) of [8]. Since A?(I) is closed, we have
A?(I) ⊂ cl(int(A?(I))) ⊂ A?(I) and so A?(I) = cl(int(A?(I))). Therefore, A?(I)
is regularclosed.
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(ii) Since τ ∩N =
{
φ
}

and A?(I) is regularclosed, by the above Lemma 1.1(d),
A?(I)=(A?(I))?(N ). ¤

Proof of Lemma 1.4. By Theorem 4.11 of [8], N ∼ τ. By Theorem 3.1 of [9],
I ?N ∼ τ . Since N ⊂ I ?N , by the above Lemma 1.5, A?(I ?N ) is regularclosed
and A?(I ?N ) = (A?(I ?N ))?(N ). ¤

2. Completely codense ideals

An ideal I on a space (X, τ) is said to be codense ([4]) if τ ∩I =
{
φ
}
. An ideal

I is said to be completely codense ([4]) if PO(X)∩I =
{
φ
}
. An ideal I is said to

be regular ([3]) if RO(X)∩I =
{
φ
}
. An ideal I is said to be normal ([3]) if N ⊂ I

and I is regular. Every completely codense ideal is codense and every codense ideal
is regular. The converse implications are not true. The following theorem gives
characterizations of completely codense ideals.

Theorem 2.1. Let (X, τ, I) be an ideal space. Then the following are equivalent.

(a) I is completely codense.

(b) A ⊂ A? for every A ∈PO(X).

(c) pint(A) = φ for every A ∈ I.

(d) Every dense set is I-dense.

Proof. (a) ⇒ (b). Suppose A ∈ PO(X) and x 6∈ A?. Then there exists an open set
G containing x such that G ∩A ∈ I. Since A ∈ PO(X), G ∩A ∈ PO(X) and so by
hypothesis, G ∩A = φ which implies that x 6∈ A.

(b) ⇒ (c). Let A ∈ I such that pint(A) 6= φ. Then there exists a non-empty
preopen set G such that G ⊂ A and so G? ⊂ A? = φ. Since G ⊂ G?, G = φ which
is a contradiction. Therefore, pint(A) = φ.

(c) ⇒ (a). Let A ∈ PO(X) ∩ I. Then A ∈ PO(X) ⇒ A ⊂ int(cl(A)). A ∈ I
⇒ pint(A) = φ ⇒ A ∩ int(cl(A)) = φ ⇒ A = φ.

(a) and (d) are equivalent by Theorem 4.10 of [4]. ¤

Corollary 2.2. Let (X, τ, I) be an ideal space with a completely codense ideal I.
If A ∈PO(X), then

(a) A?(I) = A?(N ) and A?(I) is regularclosed, and

(b) cl(A) = cl?(A) = clα(A).

Proof. (a) If A ∈ PO(X), by Theorem 2.1(b), A ⊂ A? ⊂ cl(A) and so A? = cl(A)
which implies that A? is regularclosed. Since A ⊂ int(cl(A)), we have cl(A) ⊂
cl(int(cl(A))) ⊂ cl(A) and so A? = cl(A) = cl(int(cl(A))) = A?(N ).

(b) cl(A) = cl?(A) by Theorem 2.1(b) and Lemma 1.2. Therefore, cl?(A) =
A ∪A?(I) = A ∪A?(N ) = clα(A). ¤
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Theorem 2.3. Let (X, τ, I) be an ideal space. If N ⊂ I, then the following are
equivalent.

(a) I is codense.

(b) I is regular.

Proof. (a) ⇒ (b) is clear.
(b) ⇒ (a). Let G ∈ τ ∩I. G ∈ τ ⇒ int(cl(G)) = G∪(int(cl(G))−G) ∈ I∪N =

I. Since int(cl(G)) ∈ RO(X), int(cl(G)) = φ and so G = φ. Hence I is codense.¤

Corollary 2.4. Every normal ideal is codense.
In general, codense ideals need not be normal. If (X, τ) is a space with a non-

empty nowhere dense set, then the ideal
{
φ
}

is codense but not normal. But for
any codense ideal I, it is clear that Ĩ is always normal. Since in open hereditarily
irresolvable(o.h.i) spaces [1, Theorem 3.7] or in submaximal spaces (i.e., dense sets
are open)[4, Theorem 4.15], codense ideals are completely codense and an ideal I is
completely codense if and only if I ⊂ N [4, Theorem 4.13], the following Corollary
2.5 follows from Corollary 2.4.

Corollary 2.5. If X is an o.h.i space or a submaximal space, then an ideal I is
normal if and only if I = N .

Theorem 2.6. Let (X, τ, I) be an ideal space. Then

(a)
{
φ
}

? I = 〈I ∩ F〉.
(b) If I is regular, then = = 〈I∩F〉 is completely codense and the converse holds,

if N ⊂ I.

Proof. (a). A ∈ {
φ
}

? I⇔ A?(
{
φ
}
) ∈ I ⇔ cl(A) ∈ I ⇔ A ∈ 〈I ∩ F〉.

(b) Suppose A ∈ PO(X)∩=. A ∈ PO(X) ⇒ A ⊂ int(cl(A)). A ∈ = ⇒ cl(A) ∈
I ⇒ int(cl(A)) ∈ I. Since I is regular, int(cl(A)) = φ which implies that A = φ.
Therefore, = is completely codense.

Conversely, suppose = is completely codense and N ⊂ I. If A ∈ RO(X) ∩ I,
then A ∈ RO(X) and A ∈ I. A ∈ RO(X) implies that cl(A) − A ∈ N and so
cl(A) = (cl(A) − A) ∪ A ∈ I ∪ N = I. Therefore, A ∈ =. Since A ∈ RO(X), A ∈
PO(X) and so A ∈ PO(X) ∩ = which implies that A = φ. Hence I is regular. ¤

The following example shows that I need not be regular even if = = 〈I ∩ F〉 is
completely codense.

Example 2.7. Let X =
{
a, b, c, d

}
with the topology τ =

{
φ,

{
c
}
,
{
a, b

}
,

{
a, b, c

}
, X

}
.

If I =
{
φ,

{
a
}
,
{
b
}
,
{
a, b

}}
, then = = 〈I ∩ F〉 =

{
φ
}

is completely codense but I
is not regular, since

{
a, b

}
is a regularopen set which is an element of I.

The largest ideal contained in the ring of closed subsets of a space (X, τ) is
called the characteristic ideal [16, Page 175], usually denoted by Γ(X, τ) or simply
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Γ. The following theorem deals with the extension of completely codense ideals.

Theorem 2.8. Let (X, τ) be a space with ideals I and =. If I and = are completely
codense, then I ? = is completely codense. The converse is true, if = ⊂ Γ(X, τ).

Proof. Suppose A ∈ (I ? =) ∩ PO(X). A ∈ PO(X) ⇒ A ⊂ A?(I), by Theorem
2.1(b). A ∈ I ?= ⇒ A?(I) ∈ = ⇒ A ∈ =. Since, = is completely codense, A = φ.
Therefore I ? = is completely codense. Conversely, if I ? = is completely codense,
since I ⊂ I ? =, I is completely codense. To prove that = is completely codense,
we prove that = ⊂ N . A ∈ = ⇒ A is τ?(I)-closed ⇒ A?(I) ⊂ A ⇒ A?(I) ∈
= ⇒ A ∈ I ? = ⇒ A ∈ N . Therefore, = is completely codense. ¤

The following Corollary 2.9 follows from the fact that N is completely codense
and I ⊂ I ∪ N ⊂ I ?N for any arbitrary ideal I.

Corollary 2.9. Let (X, τ, I) be an ideal space. Then

(a) I is completely codense if and only if I ?N is completely codense, and

(b) I is completely codense if and only if I ∪ N is completely codense.

The following Example 2.10 shows that = need not be completely codense, if
I ? = is completely codense but clearly = is completely codense, if = ⊂ I.

Example 2.10. Let X =
{
a, b, c

}
with the topology τ =

{
φ,

{
a
}
, X

}
. If I ={

φ,
{
c
}}

and = =
{
φ,

{
a
}}

, then I and I ? = =
{
φ,

{
c
}}

are completely codense
ideals but = is regular which is not completely codense.

3. Banach category theorem

A space is said to resolvable ([7]) if X is the union of two disjoint dense subsets.
An ideal space (X, τ, I) is said to be I-resolvable ([4]) if X has two disjoint I dense
subsets. Every resolvable space is N -resolvable and if I and = are ideals with I ⊂ =
and X is =-resolvable, then X is I-resolvable. I-resolvable spaces are introduced
and studied by Dontchev, Ganster and Rose in [4] and they raised the question: If
X is I-resolvable, then is X (I ∪N )-resolvable?. To answer this question, we need
the following theorem.

Theorem 3.1. Let (X, τ, I) be an ideal space. If λ = I ∩ N and β = I ∪ N , then
for every subset A of X,

(a) (A?(I))?(N ) = (A?(I ?N ))?(N ) = (A?(Ĩ))?(N ) = A?(Ĩ).

(b) (A?(I))?(N ) = (A?(β))?(N ).

(c) (A?(β))?(N ) ⊂ A?(N ).

(d) A?(N ) = (A?(λ))?(N ).
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Proof. (a) Let x 6∈ A?(Ĩ). Then there exists an open set G containing x such that
G ∩A ∈ Ĩ and so (G ∩A)?(I) ∈ N which implies that G ∩A?(I) ∈ N . Hence G ∩
(A?(I))?(N ) = φ which implies that x 6∈ (A?(I))?(N ). Therefore,(A?(I))?(N ) ⊂
A?(Ĩ) ⊂ A?(I) and so ((A?(I))?(N ))?(N ) ⊂ (A?(Ĩ))?(N ) ⊂ (A?(I))?(N ). Since
N ∼ τ , it follows that (A?(Ĩ))?(N ) = (A?(I))?(N ). (A?(Ĩ))?(N ) = A?(Ĩ) by
Lemma 1.4.

(b) Since I ⊂ β ⊂ Ĩ, we have A?(Ĩ) ⊂ A?(β) ⊂ A?(I) and so (A?(Ĩ))?(N ) ⊂
(A?(β))?(N ) ⊂ (A?(I))?(N ) = (A?(Ĩ))?(N ) by (a). Therefore, (A?(Ĩ))?(N ) =
(A?(β))?(N ) = (A?(I))?(N ).

(c) Since N ⊂ β, A?(β) ⊂ A?(N ) and so (A?(β))?(N ) ⊂ (A?(N ))?(N ) =
A?(N ), since N ∼ τ.

(d) Since λ ⊂ N , it follows from Lemma 1.3. ¤

Theorem 3.2. An ideal space (X, τ, I) is I-resolvable if and only if it is Ĩ-
resolvable.

Proof. Suppose X is I-resolvable. Let A be any I-dense subset of X. Then
A?(I) = X and so (A?(I))?(N ) = X?(N ) = X. By Theorem 2.1(a), A?(Ĩ) = X.
It follows that X is Ĩ-resolvable. Since I ⊂ I ?N , the converse is clear. ¤

Corollary 3.3. An ideal space (X, τ, I) is I-resolvable if and only if it is (I ∪N )-
resolvable.

In the remaining part of this section, we generalize the well known Banach
Category Theorem. For topological spaces, Kuratowski ([10]) proved that every
topology is compatible with the σ-ideal M of meager sets. Jankovic and Hamlett
([9]) extended the result of Kuratowski by proving the following:

Theorem A (Generalized Banach Category Theorem). For any ideal space
(X, τ, I), (Ĩ)σ ∼ τ.

Theorem 3.4. Let (X, τ, I) be an ideal space and β = I ∪ N . Then

(a) β ?N = Ĩ
(b) β ?N ∼ τ and

(c) A?(Ĩ) = A?(β ?N ) = (A?(β ?N ))?(N ) for every subset A of X.

Proof. (a) A ∈ I ? N ⇒ A?(I) ∈ N ⇒ A?(β) ∈ N , since I ⊂ β ⇒ A ∈
β ? N .Therefore, I ? N ⊂ β ? N . A ∈ β ? N ⇒ A?(β) ∈ N ⇒ A?(Ĩ) ∈
N ⇒ (A?(I))?(N ) = φ from Theorem 3.1(a). Since N ∼ τ, A?(I) ∈ N which
implies that A ∈ I ?N . Therefore, β ?N ⊂ I ?N . Hence β ?N = I ?N .

(b) follows from the fact that I ?N ∼ τ.

(c) follows from Lemma 1.4. ¤
Now, using Theorem 3.4(a), we can generalize the Banach Category Theorem

as follows.
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Theorem 3.5. Let (X, τ, I) be an ideal space. If β = I ∪ N , then (β̃)σ ∼ τ.

Theorem 3.6. If (X, τ, I) is an ideal space, I is compatible and β = I ∪ N , then
β = β ?N .

Proof. Clearly, β ⊂ β ?N . If A ∈ β ?N , then A?(β) ∈ N and so (A?(β))?(N ) =
φ. By Theorem 3.1(b), (A?(I))?(N ) = φ which implies that A?(I) ∈ N and so
A∩A?(I) ∈ N . Since I ∼ τ, A−A?(I) ∈ I. Hence, A =(A−A?(I))∪(A∩A?(I)) ∈
I ∪ N = β. This completes the proof. ¤

Corollary 3.7. Let (X, τ, I) be an ideal space. Then, N ⊂ I and I ∼ τ ⇔ I =
I ?N [14, Theorem 9(a)].

Corollary 3.8. Let (X, τ, I) be an ideal space. If β = I ∪ N and I ∼ τ , then
β = β ?N = I ?N and so β ∼ τ.

Proof. Follows from Theorems 3.4 and 3.6. ¤
Using Corollary 3.8, we can also generalize the Banach Category Theorem as

follows.

Theorem 3.9. If (X, τ, I) is an ideal space, β = I ∪ N and I ∼ τ, then βσ ∼ τ.

If (X, τ, I) is an ideal space and I ∼ τ , then clearly I ? I = I. Also for an
arbitrary ideal I, Ĩ ? N = Ĩ [13, Theorem 4.1]. Since Ĩ ∼ τ , Ĩ ? Ĩ = Ĩ. In the
following Theorem 3.10 , we prove that the extension of a compatible ideal I via Ĩ
is Ĩ.

Theorem 3.10. If (X, τ, I) is an ideal space and I ∼ τ , then I ? Ĩ = Ĩ.

Proof. I ? Ĩ =
{
A | A?(I) ∈ Ĩ}

=
{
A | (A?(I))?(I) ∈ N}

=
{
A | A?(I) ∈ N}

,
since I ∼ τ =

{
A | A ∈ I ?N}

= Ĩ. ¤
We have the following generalization of Banach Category Theorem using The-

orem 3.10.

Theorem 3.11. If (X, τ) is a space with a compatible ideal I, then the countable
extension of the compatible extension of I via Ĩ is always compatible with τ i.e.,
(I ? Ĩ)σ ∼ τ .

The well known Banach Category Theorem (Corollary 3.12 below) is obtained
as an immediate corollary to Theorems 3.5, 3.9 and 3.11, if we take I =

{
φ
}
.

Corollary 3.12. Let (X, τ) be a space and let M denote the ideal of meager sets.
Then M∼ τ.

4. I-locally closed subsets

A subset A of a space (X, τ) is locally closed ([10]) if A is the intersection of an
open set and a closed set. Locally closed sets are further investigated by Ganster
and Reilly in [6]. In 1999, Dontchev ([2]) introduced I-locally closed subsets in
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an ideal space. A subset A of an ideal space (X, τ, I) is called I-locally closed if
A = U ∩ V , where U ∈ τ and V is ?-perfect. Clearly, in the case of the minimal
ideal, the concepts I-locally closed and locally closed are equivalent. It is clear that
open as well as closed sets need not be I-locally closed. If (X, τ, I) is an ideal space
where I-is not codense, then X is not I-locally closed. But if I is codense, then
every open set is I-locally closed [2, Proposition 4.1] and from Lemma 1.1, it is
clear that every regularclosed set is I-locally closed. The following theorem gives
characterizations of I-locally closed subsets.

Theorem 4.1. Let (X, τ, I) be an ideal space and A ⊂ X. Then the following are
equivalent.

(a) A is I-locally closed.

(b) A = G ∩A? for some open set G.

(c) A ⊂ A? and A? −A is closed.

(d) A ⊂ A? and A ∪ (X −A?) is open.

(e) A ⊂ A? and A ⊂ int(A ∪ (X −A?)).

Proof. (a) ⇒ (b). Suppose A = U ∩ V where U ∈ τ and V = V ?. Then A ⊂ V
and so A? ⊂ V ? = V . Also, A? = (U ∩ V )? ⊃ U ∩ V ? = U ∩ V = A and so
A = A ∩A? = (U ∩ V ) ∩A? = U ∩ (V ∩A?) = U ∩A?.

(b) ⇒ (c). Suppose A = G ∩ A? for some open set G. Clearly, A ⊂ A? and
A?−A = A? ∩ (X −A) = A? ∩ (X − (G∩A?)) = A? ∩ (X −G). Since A? is closed,
A? −A is closed.

(c) ⇒ (d). A? − A is closed ⇒ A? ∩ (X − A) is closed ⇒ X − (A? ∩ (X − A))
is open ⇒ A ∪ (X −A?) is open.

(d) ⇒ (e) is clear.
(e) ⇒ (a). X −A? = int(X −A?) ⊂ int(A∪ (X −A?)) and so A∪ (X −A?) is

open, by hypothesis. Since A = (A ∪ (X −A?)) ∩A?, A is I-locally closed. ¤

Corollary 4.2. If (X, τ, I) is an ideal space and A ⊂ X is I-locally closed, then

(a) A is ?-dense in itself

(b) A? is ?-perfect, and

(c) cl(A) = cl?(A) = A?.

Proof. (a) follows from Theorem 4.1, (b) follows from (a) and the fact that (A?)? ⊂
A? ([8]) and (c) follows from Lemma 1.2. ¤

In the following theorems, we give the relation of ?-perfect, locally closed and
?-dense in itself subsets with I-locally closed subsets.

Theorem 4.3. Let (X, τ, I) be an ideal space and A ⊂ X. If A is ?-perfect, then
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A is I-locally closed. The converse is true, if A is τ?-closed.

Proof. If A is ?-perfect, then A = A? and so A = X ∩ A = X ∩ A? which implies
that A is I-locally closed. Conversely, if A is I-locally closed, then A ⊂ A?. A is
τ?-closed implies that A? ⊂ A. Hence A = A?. ¤

Theorem 4.4. Let (X, τ, I) be an ideal space and A ⊂ X. Then A is I-locally
closed if and only if A is locally closed and A is ?-dense in itself.

Proof. If A is I-locally closed, then A is ?-dense in itself and A = G ∩A? for some
G ∈ τ. Since A? is closed, A is locally closed. Conversely, if A is locally closed, then
A = G ∩ F where G ∈ τ and F is closed. A ⊂ F ⇒ A? ⊂ F ⇒ A? ∩ F = A?.
Now A is ?-dense in itself implies that A ⊂ A? and so A = A∩A? = (G∩F )∩A? =
G ∩ (F ∩A?) = G ∩A?. Therefore, A is I-locally closed. ¤

Theorem 4.5. Let (X, τ, I) be a T1 ideal space and A ⊂ X. If A is discrete and
?-dense in itself, then A is I-locally closed.

Proof. A is locally closed by Proposition 2(i) of [6] and so A is I-locally closed by
Theorem 4.4. ¤

The following example shows that I-locally closed set need not be ?-perfect and
locally closed set need not be I-locally closed. Also, it shows that the complement
of an I-locally closed set need not be I-locally closed.

Example 4.6. Consider the ideal space (X, τ, I) of Example 2.7. If A =
{
c
}
, then

A is I-locally closed but not ?-perfect. If B =
{
a, b, d

}
, then B is locally closed but

not I-locally closed. Since X − A = B, the complement of an I-locally closed set
need not be I-locally closed.

The following example shows that ?-dense in itself set need not be I-locally
closed.

Example 4.7. Let X =
{
a, b, c, d

}
, τ =

{
φ,

{
d
}
,
{
a, c

}
,
{
a, c, d

}
, X

}
and I ={

φ,
{
c
}
,
{
d
}
,
{
c, d

}}
. If A =

{
a
}
, then A is ?-dense in itself but not I-locally

closed.

Recall that a dense subset of a topological space is open if and only if it is
locally closed. As a generalization of this result to I-locally closed sets, we have the
following theorem.

Theorem 4.8. Let (X, τ, I) be an ideal space and A be an I-dense subset of X.
Then A is open if and only if A is I-locally closed.
Proof. Suppose A is I-dense and open. Then A = A ∩ X = A ∩ A? and so A is
I-locally closed. Conversely, if A is I-locally closed and I-dense, then A = G ∩A?

where G ∈ τ which implies A = G ∩X = G and so A is open. ¤
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