Pulmonary Function Test and Body Composition Analysis in Obese Children

비만 소아에서 폐기능 검사와 체성분 분석에 대한 연구

  • Shin, Jee Seon (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Park, Ji Hye (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Kim, Ji Young (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Kim, Su Jung (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Hong, Young Mi (Department of Pediatrics, College of Medicine, Ewha Womans University)
  • 신지선 (이화대학교 의과대학 소아과학교실) ;
  • 박지혜 (이화대학교 의과대학 소아과학교실) ;
  • 김지영 (이화대학교 의과대학 소아과학교실) ;
  • 김수정 (이화대학교 의과대학 소아과학교실) ;
  • 홍영미 (이화대학교 의과대학 소아과학교실)
  • Received : 2004.12.30
  • Accepted : 2005.03.09
  • Published : 2005.06.15

Abstract

Purpose : Obesity is associated with disturbances of ventilatory functions in adults. But few studies have evaluated the pulmonary complications of obesity in the pediatric population. The purpose of this study is to clarify the effects of obesity on pulmonary function and body composition in obese children. Methods : Forty seven obese children whose ages ranged from nine to twelve years were evaluated for their body composition(intracellular fluid, extracellular fluid, protein mass, mineral mass, soft lean mass, fat mass, percent body fat, fat distribution) by bioelectrical impedance analysis. Hemoglobin, serum glucose, aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol and triglycerides were measured. Pulmonary function test was performed by spirometer. Results : Intracellular fluid, protein mass, fat mass, percent body fat and fat distribution were significantly higher in severely obese children with an obesity index of more than 150 percent compared with those with an index of less than 150 percent. Peak expiratory flow rate(PEFR) was significantly lower in severely obese children with obesity index of more than 150 percent compared with those with less than 150 percent($241.7{\pm}14.6L/sec$ vs $276.8{\pm}64.3L/sec$). PEFR, forced expiratory flow 25 percent($FEF_{25}$), mid expiratory flow rate(MEFR), forced expiratory flow 50 percent($FEF_{50}$), forced expiratory volume in 1st second($FEV_1$) and forced vital capacity(FVC) were decreased in 37.0 percent, 14.8 percent, 14.8 percent, 11.1 percent, 3.7 percent and 3.7 percent of obese children, respectively. Conclusion : PEFR was significantly decreased in obese children. Pulmonary function test must be performed in severely obese children and more extended study is needed in other age groups.

목 적 : 비만아에서 폐기능 검사와 체성분 분석을 시행함으로써 비만이 폐기능과 체성분에 미치는 영향을 밝히고자 하였다. 방 법 : 9세에서 12세의 중등도 이상의 비만 소아 27명과 정상 대조군 20명을 대상으로 체성분(세포내액, 세포외액, 단백질, 무기질, 근육량, 체지방량, 체지방률, 복부지방률)을 분석하였다. 헤모글로빈, 혈당, aspartate aminotransferase(AST), alanine aminotransferase(ALT), 총 콜레스테롤, 혈중 중성지방을 측정하였고 폐기능 검사를 시행하였다. 결 과 : 중등도 이상의 비만 소아에서 peak expiratory flow rate(PEFR)이 정상군에 비해 유의하게 감소하였고, 고도 비만아에서 중등도 비만아보다 세포내액, 단백질, 체지방량, 체지방률, 복부지방률이 유의하게 높았고, peak expiratory flow rate(PEFR)은 고도 비만아에서 유의한 감소를 보였다. peak expiratory flow rate(PEFR)이 비만 소아 중 37.0%에서 감소하였고, forced expiratory flow 25%($FEF_{25}$)와 mid-expiratory flow rate(MEFR)이 14.8%에서, forced expiratory flow 50%($FEF_{50}$)이 11.1%에서, forced expiratory volume in 1st second($FEV_1$)과 FVC가 3.7%에서 감소하였다. 결 론 : 본 연구 대상인 9-12세 소아에서 비만도, 체지방률과 폐기능 측정치와 상관성은 없었지만, 중등도 이상의 비만 소아에서 peak expiratory flow rate(PEFR)이 감소하는 결과를 보이므로 중등도 비만 소아에서 폐기능 검사를 시행하는 것이 좋으며 앞으로 다른 연령군의 비만 소아에서 폐기능 검사에 대한 연구가 필요할 것으로 생각한다.

Keywords

References

  1. Hong YM, Moon KR, Seo JW, Shim JG, Yoo KH, Jeong BJ, et al. Guideline of diagnosis and treatment in childhood obesity. J Korean Pediatr Soc 1999;42:1338-45
  2. Lee DH, Lee C, Lee CG, Hwang YS, Cha SH, Choi Y. The incidence of complication in severely obese children. J Korean Pediatr Soc 1991;34:445-53
  3. Kim WD. Pulmonary function test. In : Han YC, editors. Clinical pulmonology. 2nd ed. Seoul : Ilchokak, 1990:69-83
  4. Ray RM, Senders CW. Airway management in the obese child. Pediatr Clin North Am 2001;48:1055-63 https://doi.org/10.1016/S0031-3955(05)70357-6
  5. Bosisio E, Sergi M, di Natale B, Chiumello G. Ventilatory volumes, flow rates, transfer factor and its components (membrane component, capillary volume) in obese adults and children. Respiration 1984;45:321-6 https://doi.org/10.1159/000194638
  6. Carey IM, Cook DG, Strachan DP. The effects of adiposity and weight change on forced expiratory volume decline in a longitudinal study of adults. Int J Obese Relat Metab Disord 1999;23:979-85 https://doi.org/10.1038/sj.ijo.0801029
  7. Lee JE, Park KW, Cho SJ, Whang IT, Hong YM. Body composition by bioelectrical impedance analysis in obese children. J Korean Pediatr Soc 2001;44:992-1001
  8. Yom HW, Kim SJ, Whang IT, Hong YM. Correlation between body fat percent estimated by bioelectrical impedance analysis and other variable methods. J Korean Pediatr Soc 2003;46:751-7
  9. Kotler DP, Burastero S, Wang J, Richard RN Jr.. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis : effects of race, sex, and disease. Am J Clin Nutr 1996;64(3 suppl):489S-97S
  10. Hoffer EC, Meador CK, Simpson DC. Correlation of wholebody impedance with total water volume. J Appl Physiol 1969;27:531-4.
  11. Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviot Space Environ Med 1988;59:1163-9
  12. Kushiner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986; 44:417-24
  13. Segal KR, Gutin B, Presta E, Wang J, Van Itallic TB. Estimation of human body composition by electrical impedance methods : comperative study. J Appl Physol 1985;58: 1565-71
  14. Gaensler EA. Clinical pulmonary physiology. N Engl J Med 1995;252:177-84 https://doi.org/10.1056/NEJM195502032520505
  15. Derenne JP, Macklem PT, Roussos C. The respiratory muscles : mechanics, control and pathophysiology. Part III. Am Rev Respir Dis 1978;118:581-601
  16. Svendsen OL, Hassager C, Bergmann I, Christiansen C. Measurement of abdominal and intra-abdominal fat in postmenopausal women by dual energy X-ray absorptiometry and anthropometry : comparision with computerized tomography. Int J Obes Relat Metab Disord 1993;17:45-51
  17. Ferretti A, Giampiccolo P, Cavalli A, Milic-Emili J, Tantucci C. Expiratory flow limitation and orthopnea in massively obese subjects. Chest 2001;119:1401-8 https://doi.org/10.1378/chest.119.5.1401
  18. Hyatt RE, Schilder DP, Fry DL. Relationship between maximum expiratory flow and degree of lung inflation. J Appl Physio 1958;13:331-6
  19. Hyatt RE, Flath RE. Relationship of air flow to pressure during maximal respiratory effort in man. J Appl Physio 1966;21:477-82
  20. Schoenberg JB, Beck CJ, Bouhuys A. Growth and decay of pulmonary function in healthy blacks and whites. Respir Physiol 1978;33:367-93 https://doi.org/10.1016/0034-5687(78)90063-4
  21. Gonen B, O'Donnell P, Post TJ, Quinn TJ, Schulman ES. Very low lipoproteins(VLDL) trigger the release of histamine from human basophils. Biochim Biophys Acta 1987; 917:418-24 https://doi.org/10.1016/0005-2760(87)90121-4
  22. Guilleminault C, Simmons FB, Motta J, Cummiskey J, Rosekind M, Schoreder JS, et al. Obstructive sleep apnea syndrome and tracheostomy. Long-term follow up experience. Arch Intern Med 1981;141:985-8 https://doi.org/10.1001/archinte.141.8.985
  23. Lopata M, Onal E. Mass loading, sleep apnea and the pathogenesis of the obesity hypoventilation. Am Rev Respir Dis 1982;126:640-5
  24. Marcus CL, Curtis S, Koerner CB, Joffe A, Serwint JR, Loughlin GM. Evaluation of pulmonary function and polysomnography in obese children and adolescents. Pediatr Pulmonol 1996;21:176-83 https://doi.org/10.1002/(SICI)1099-0496(199603)21:3<176::AID-PPUL5>3.0.CO;2-O
  25. Ray CS, Sue DY, Bray G, Hansen JE, Wasserman K. Effects of obesity on respiratory function. Am Rev Respir Dis 1983;128:501-6
  26. Unterborn J. Pulmonary fuction testing in obesity, pregnancy, and extremes of body habitus. Clin Chest Med 2001;22:759-67 https://doi.org/10.1016/S0272-5231(05)70064-2
  27. De Lorenzo A, Maiolo C, Mohamed EI, Andreoli A, Petrone-De Luca P, Rossi P. Body composition analysis and changes in airways function in obese adults after hypocaloric diet. Chest 2001;119:1409-15 https://doi.org/10.1378/chest.119.5.1409
  28. Lazarus R, Sparrow D, Weiss ST. Effect of obesity and fat distribution on ventilation function : the normative aging study. Chest 1997;11:891-8
  29. Lazarus R, Colditz G, Berkey CS, Speizer FE. Effects of body fat on ventilatory function in children and adolescents: Cross-sectional findings from a random population sample of school children. Pediatr Pulmonol 1997;24:187-94 https://doi.org/10.1002/(SICI)1099-0496(199709)24:3<187::AID-PPUL4>3.0.CO;2-K
  30. Koenig SM. Pulmonary complication of obesity. Am J Med Sci 2001;321:249-79 https://doi.org/10.1097/00000441-200104000-00006
  31. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest 1993;103:1470-6 https://doi.org/10.1378/chest.103.5.1470
  32. Park SW, Kim HM, Kim JS, Cha JK, Lee HR. Effects of obesity on pulmonary function in children. J Korean Pediatr Soc 2002;45:588-93