DOI QR코드

DOI QR Code

Expression, Purification and Properties of Shikimate Dehydrogenase from Mycobacterium Tuberculosis

  • Zhang, Xuelian (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Zhang, Shunbao (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Hao, Fang (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Lai, Xuhui (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Yu, Haidong (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Huang, Yishu (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Wang, Honghai (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University)
  • Published : 2005.09.30

Abstract

Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is onsidered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for $\alpha$-helix, $\beta$-sheet, $\beta$-turn, and random coil were 29.2%, 9.3%, 32.7%, and 28.8%, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature $63^{\circ}C$. The apparent Michaelis constant for shikimic acid and $NADP^+$ were calculated to be about $29.5\;{\mu}M$ and $63\;{\mu}M$. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of $NADP^+$ with an enzyme turnover number of $399\;s^{-1}$. Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.

Keywords

References

  1. Anton, I. A. and Coggins, J. R. (1988) Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem. J. 249, 319-326
  2. Balinsky D., Dennis A. W. and Cleland W. W. (1971) Kinetic and isotope-exchange studies on shikimamte dehydrogense from pisum sativum. Biochem 10, 1947-1952 https://doi.org/10.1021/bi00786a032
  3. Barea, J. L. and Giles, N. H. (1978) Purification and characterization of quinate (shikimate) dehydrogenase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Biochim. Biophys. Acta. 524, 1-14 https://doi.org/10.1016/0005-2744(78)90097-9
  4. Benach, J., Lee, I., Edstrom, W., Kuzin, A. P., Chiang, Y., Acton, T. B., Montelione, G. T. and Hunt, J. F. (2003) The 2.3-$\AA$ Crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J. Bio. Chem. 278, 19176-19182 https://doi.org/10.1074/jbc.M301348200
  5. Chaudhuri, S. and Coggins J. R. (1985) The purification of shikimate dehydrogenase from Escherichia coli. Biochem. J. 226, 217-223
  6. Chaudhuri, S., Anton, I. A. and Coggins, J. R. (1987) Shikimate dehydrogenase from Escherichia coli. Methods Enzymol. 142, 315-320 https://doi.org/10.1016/S0076-6879(87)42042-9
  7. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry III, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, S., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, S., Squares, S., Sqares, R., Sulston, J. E., Taylor, K., Whitehead, S. and Barrell, B. G. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544 https://doi.org/10.1038/31159
  8. Davies, G. M., Barrett-Bee, K. J., Jude, D. A., Lehan, M., Nichols, W. W., Pinder, P. E., Thain, J. L., Watkins, W. J. and Wilson, R. G. (1994) (6S)-6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob. Agents Chemother. 38, 403-406 https://doi.org/10.1128/AAC.38.2.403
  9. Dowsett, J. R. and Corbett, J. R. (1971) The purification and properties of shikimate dehydrogenase. Biochem. J. 123, 23
  10. Goel A. K, Rajagopal L. and Sonti, R. V. (2001) Pigment and virulence deficiencies associated with mutations in the aroE gene of Xanthomonas oryzae pv. Oryzae. Appl. Environ. Microbio. 67, 245-250 https://doi.org/10.1128/AEM.67.1.245-250.2001
  11. Greenfield, N. J. (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism. Data Anal. Biochem. 235, 1-10 https://doi.org/10.1006/abio.1996.0084
  12. Knaggs, A. R. (2003) The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20, 119-136 https://doi.org/10.1039/b100399m
  13. Kurland, C. and Gallant, J. (1996) Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7, 489-493 https://doi.org/10.1016/S0958-1669(96)80050-4
  14. Lim, S., Schroder, I. and Monbouquette, H. G. (2004) A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus. FEMS Microbiol Lett. 238, 101-106
  15. Lourenco, E. J., Silva, G. M. L. and Neves, V. A. (1991) Purification and properties of shikimate dehydrogenase from cucumber (Cucumis sativus L.). J. Agric. Food Chem. 39, 458-462 https://doi.org/10.1021/jf00003a006
  16. Maclean, J., Campbell, S. A., Pollock, K., Chackrewarthy, S., Coggins, J. R. and Lapthorn, A. J. (2000) Crystallization and preliminary X-ray analysis of shikimate dehydrogenase from Escherichia coli. Acta Crystallogr. Sect. D. 56, 512-515 https://doi.org/10.1107/S0907444900002377
  17. Magalhaes, M. L. B., Pereira, C. P., Basso, L. A. and Santos, D. S. (2002) Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv. Protein Expression Purification 26, 2659-2664 https://doi.org/10.1016/S1046-5928(02)00509-0
  18. Michel, G., Roszak, A. W., Sauve, V., Maclean, J., Matte, A., Coggins, J. R., Cygler, M. and Lapthorn, A. J. (2003) Structures of shikimate dehydrogenase AroE and its paralog YdiB. J. Biol. Chem. 278, 19463-19472 https://doi.org/10.1074/jbc.M300794200
  19. Padyana, A. K. and Burley, S. K. (2003) Crystal structure of shikimate 5-dehydrogenase (SDH) bound to NADP: insights into function and evolution. Structure 11, 1005-1013 https://doi.org/10.1016/S0969-2126(03)00159-X
  20. Parish, T. and Stoker, N. G. (2002) The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148, 3069-3077
  21. Polley, L. D. (1978) Purification and characterization of 3-dehydroquinate hydrolase and shikimate oxidoreductase. Biochim.Biophys. Acta. 526, 259-266 https://doi.org/10.1016/0005-2744(78)90310-8
  22. Roberts, F., Roberts, C. W., Johnson, J. J., Kyle, D. E., Krell, T., Coggins, J. R., Coombs, G. H., Milhous, W. K., Tzipori, S., Ferguson, D. J. P., Chakrabarti, D. and Mcleod, R. (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393, 801-805 https://doi.org/10.1038/31723
  23. Singh, S., Korolev, S., Koroleva, O., Zarembinski, T., Collart, F., Joachimiak, A. and Christendat, D. (2005) Crystal Structure of a novel shikimate dehydrogenase from Haemophilus influenzae. J. Bio. Chem. 280, 17101-17108 https://doi.org/10.1074/jbc.M412753200
  24. Sreerama, N. and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set Anal. Biochem. 287, 252-260 https://doi.org/10.1006/abio.2000.4880
  25. Steinrucken, H. C. and Amrhein, N. (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207-1212 https://doi.org/10.1016/0006-291X(80)90547-1
  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids Res. 24, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  27. Yang, J. T., Wu, C. S. and Martinez, H. M. (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208-269 https://doi.org/10.1016/0076-6879(86)30013-2
  28. Ye, S., Delft, F., Brooun, A., Knuth, M. W., Swanson, R. V. and McRee D. E. (2003) The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J. Bacteriol. 185, 4144-4151 https://doi.org/10.1128/JB.185.14.4144-4151.2003

Cited by

  1. Structural studies of shikimate dehydrogenase from Bacillus anthracis complexed with cofactor NADP vol.15, pp.2, 2009, https://doi.org/10.1007/s00894-008-0403-z
  2. Isolation of alpha-linolenic acid from Sutherlandia frutescens and its inhibition of Mycobacterium tuberculosis’ shikimate kinase enzyme vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1344-1
  3. Homogeneous recombinant Mycobacterium tuberculosis shikimate dehydrogenase production: An essential step towards target-based drug design vol.45, pp.2, 2009, https://doi.org/10.1016/j.ijbiomac.2009.05.003
  4. Development of new antituberculous agents based on new drug targets and structure–activity relationship vol.3, pp.1, 2008, https://doi.org/10.1517/17460441.3.1.21
  5. New tuberculosis drug development: targeting the shikimate pathway vol.3, pp.5, 2008, https://doi.org/10.1517/17460441.3.5.565
  6. Biochemical characterization and inhibitor discovery of shikimate dehydrogenase from Helicobacter pylori vol.273, pp.20, 2006, https://doi.org/10.1111/j.1742-4658.2006.05469.x
  7. X-ray crystallographic and enzymatic analyses of shikimate dehydrogenase from Staphylococcus epidermidis vol.276, pp.4, 2009, https://doi.org/10.1111/j.1742-4658.2008.06856.x
  8. Structural and Mechanistic Analysis of a Novel Class of Shikimate Dehydrogenases: Evidence for a Conserved Catalytic Mechanism in the Shikimate Dehydrogenase Family vol.50, pp.40, 2011, https://doi.org/10.1021/bi200586y
  9. Inhibition and Biochemical Characterization of Methicillin-Resistant Staphylococcus aureus Shikimate Dehydrogenase: An in Silico and Kinetic Study vol.19, pp.4, 2014, https://doi.org/10.3390/molecules19044491
  10. Structural studies of shikimate 5-dehydrogenase from Mycobacterium tuberculosis vol.72, pp.2, 2008, https://doi.org/10.1002/prot.21953
  11. Molecular Characterization of Quinate and Shikimate Metabolism inPopulus trichocarpa vol.289, pp.34, 2014, https://doi.org/10.1074/jbc.M114.558536
  12. Isolation and molecular characterization of the shikimate dehydrogenase domain from the Toxoplasma gondii AROM complex vol.194, pp.1-2, 2014, https://doi.org/10.1016/j.molbiopara.2014.04.002
  13. Genomics and Genome Evolution of Mycobacterium tuberculosis* vol.39, pp.7, 2012, https://doi.org/10.3724/SP.J.1206.2011.00469
  14. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum vol.97, pp.18, 2013, https://doi.org/10.1007/s00253-012-4659-y