DOI QR코드

DOI QR Code

DNA Light-strand Preferential Recognition of Human Mitochondria Transcription Termination Factor mTERF

  • Nam, Sang-Chul (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kang, Chang-Won (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2005.11.30

Abstract

Transcription termination of the human mitochondrial genome requires specific binding to termination factor mTERF. In this study, mTERF was produced in E. coli and purified by two-step chromatography. mTERF-binding DNA sequences were isolated from a pool of randomized sequences by the repeated selection of bound sequences by gel-mobility shift assay and polymerase chain reaction. Sequencing and comparison of the 23 isolated clones revealed a 16-bp consensus sequence of 5'-GTG$\b{TGGC}$AGANCCNGG-3' in the light-strand (underlined residues were absolutely conserved), which nicely matched the genomic 13-bp terminator sequence 5'-$\b{TGGC}$AGAGCCCGG-3'. Moreover, mTERF binding assays of heteroduplex and single-stranded DNAs showed mTERF recognized the light strand in preference to the heavy strand. The preferential binding of mTERF with the light-strand may explain its distinct orientation-dependent termination activity.

Keywords

References

  1. Asin-Cayuela, J., Schwend, T., Farge, G. and Gustafsson, C. M. (2005) The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the nonphosphorylated form. J. Biol. Chem. 280, 25499-25505 https://doi.org/10.1074/jbc.M501145200
  2. Chomyn, A., Martinuzzi, A., Yoneda, M., Daga, A., Hurko, O., Johns, D., Lai, S. T., Nonaka, I., Angelini, C. and Attardi, G. (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. USA 89, 4221-4225
  3. Christianson, T. W. and Clayton, D. A. (1986) In vitro transcription of human mitochondrial DNA: accurate termination requires a region of DNA sequence that can function bidirectionally. Proc. Natl. Acad. Sci. USA 83, 6277-6281
  4. Christianson, T. W. and Clayton, D. A. (1988) A tridecamer DNA sequence supports human mitochondrial RNA 3'-end formation in vitro. Mol. Cell. Biol. 8, 4502-4509 https://doi.org/10.1128/MCB.8.10.4502
  5. Clayton, D. A. (1984) Transcription of the mammalian mitochondrial genome. Annu. Rev. Biochem. 53, 573-594 https://doi.org/10.1146/annurev.bi.53.070184.003041
  6. Daga, A., Micol, V., Hess, D., Aebersold, R. and Attardi, G. (1993) Molecular characterization of the transcription termination factor from human mitochondria. J. Biol. Chem. 268, 8123-8130
  7. Fernandez-Silva, P., Martinez-Azorin, F., Micol, V. and Attardi, G. (1997) The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 16, 1066-1079 https://doi.org/10.1093/emboj/16.5.1066
  8. Fernandez-Silva, P., Micol, V. and Attardi, G. (1996) Mitochondrial DNA transcription initiation and termination using mitochondrial lysates from cultured human cells. Methods Enzymol. 264, 129-139 https://doi.org/10.1016/S0076-6879(96)64014-2
  9. Ganguly, T., Chattoraj, P., Das, M., Chanda P. K., Mandal, N. C., Lee, C. Y. and Sau, S. (2004) A point mutation at the Cterminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA. J. Biochem. Mol. Biol. 37, 709-714 https://doi.org/10.5483/BMBRep.2004.37.6.709
  10. Gelfand, R. and Attardi, G. (1981) Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol. Cell. Biol. 1, 497-511
  11. Goto, Y., Nonaka, I. and Horai, S. (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651-653 https://doi.org/10.1038/348651a0
  12. Guan, K. L. and Dixon, J. E. (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262-267 https://doi.org/10.1016/0003-2697(91)90534-Z
  13. Hess, J. F., Parisi, M. A., Bennett, J. L. and Clayton, D. A. (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 351, 236-239 https://doi.org/10.1038/351236a0
  14. Jin, Z., Liu, Y., Dong, M., Hu, S. and Huang, S. (2004) Identification of the DNA binding element of the human ZNF333 protein. J. Biochem. Mol. Biol. 37, 663-670 https://doi.org/10.5483/BMBRep.2004.37.6.663
  15. Kobayashi, Y., Momoi, M. Y., Tominaga, K., Momoi, T., Nihei, K., Yanagisawa, M., Kagawa, Y. and Ohta, S. (1990) A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun. 173, 816-822 https://doi.org/10.1016/S0006-291X(05)80860-5
  16. Prieto-Martin, A., Montoya, J. and Martinez-Azorin, F. (2004) Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA. Nucleic Acids Res. 32, 2059-2068 https://doi.org/10.1093/nar/gkh528
  17. Schneider, T. D. and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097-6100 https://doi.org/10.1093/nar/18.20.6097

Cited by

  1. Mitochondrial transcription vol.2, pp.1, 2011, https://doi.org/10.4161/trns.2.1.14006
  2. Hitting the brakes: Termination of mitochondrial transcription vol.1819, pp.9-10, 2012, https://doi.org/10.1016/j.bbagrm.2011.11.004
  3. Mitochondrial DNA transcription and diseases: Past, present and future vol.1757, pp.9-10, 2006, https://doi.org/10.1016/j.bbabio.2006.03.023
  4. Helix Unwinding and Base Flipping Enable Human MTERF1 to Terminate Mitochondrial Transcription vol.141, pp.6, 2010, https://doi.org/10.1016/j.cell.2010.05.018
  5. Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain vol.397, pp.3, 2010, https://doi.org/10.1016/j.bbrc.2010.04.130
  6. Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult Female Drosophila vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00593
  7. MtSNPscore: a combined evidence approach for assessing cumulative impact of mitochondrial variations in disease vol.10, pp.S8, 2009, https://doi.org/10.1186/1471-2105-10-S8-S7