DOI QR코드

DOI QR Code

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon (Division of Life Sciences, Chungbuk National University) ;
  • Jeon, Myeong-Hoon (Division of Life Sciences, Chungbuk National University) ;
  • Lee, Sung-Hee (Department of Agricultural Biology, Chungbuk National University) ;
  • Moon, Jee-Sook (Division of Life Sciences, Chungbuk National University) ;
  • Cha, Jae-Soon (Department of Agricultural Biology, Chungbuk National University) ;
  • Kim, Hak-Yong (Division of Life Sciences, Chungbuk National University) ;
  • Cho, Tae-Ju (Division of Life Sciences, Chungbuk National University)
  • Published : 2005.11.30

Abstract

Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.

Keywords

References

  1. Bashan, Y., Sharon, E., Okon, Y. and Henis, Y. (1981) Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiol. Plant Pathol. 19, 139-144 https://doi.org/10.1016/S0048-4059(81)80016-1
  2. Bak, S., Nielsen, H. L. and Halkier, B. A. (1998) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol. Biol. 38, 725-734 https://doi.org/10.1023/A:1006064202774
  3. Bent, A. F. (1996) Plant disease resistance genes: Function meets structure. Plant Cell 8, 1757-1771 https://doi.org/10.1105/tpc.8.10.1757
  4. Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  5. De Vries, S., Hoge, H. and Bisseling, T. (1988) Isolation of total and polysomal RNA from plant tissues; in Plant Molecular Biology, Gelvin, S. B. and Schilperoot, R. A. (eds.), pp. 1-5, Kluwer Academic Publishers, Dordrecht, Netherlands
  6. Delaney, T., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. (1994) A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250 https://doi.org/10.1126/science.266.5188.1247
  7. Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Metraux, J.-P., Zhu, T. and Katagiri, F. (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 31, 217- 228 https://doi.org/10.1046/j.1365-313X.2003.01717.x
  8. Goerlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H. and Ryals, J. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629- 643 https://doi.org/10.1105/tpc.8.4.629
  9. Hammond-Kosak, K. E. and Jones, J. D. G. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8, 1773- 1791 https://doi.org/10.1105/tpc.8.10.1773
  10. Hansen, C. H., Du, L., Naur, P., Olsen, C. E., Axelsen, K. B., Hick, A. J., Pickett, J. A. and Halkier, B. A. (2001) CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276, 24790-24796 https://doi.org/10.1074/jbc.M102637200
  11. Heath, M. C. (2000) Nonhost resistance and nonspecific plant defenses. Curr. Op. Plant Biol. 3, 315-319 https://doi.org/10.1016/S1369-5266(00)00087-X
  12. Lam, E., Kato, N. and Lawton, M. (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853 https://doi.org/10.1038/35081184
  13. Lamb, C. and Dixon, R. A. (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251-275 https://doi.org/10.1146/annurev.arplant.48.1.251
  14. Lee, S.-H. and Cha, J.-S. (2001) Efficient induction of bacterial soft rot using mineral oil. Phytopathology 91, S53-S54
  15. Lee, K.-A. and Cho, T.-J. (2003) Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage. J. Biochem. Mol. Biol. 36, 433-441 https://doi.org/10.5483/BMBRep.2003.36.5.433
  16. Lu, M., Tang, X. and Zhou, J.-M. (2001) Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13, 437-447 https://doi.org/10.1105/tpc.13.2.437
  17. McDowell, J. M. and Dangl, J. L. (2000) Signal transduction in the plant immune response. Trends Biochem. Sci. 25, 79-82 https://doi.org/10.1016/S0968-0004(99)01532-7
  18. Mysore, K. S. and Ryu, C.-M. (2004) Nonhost resistance: how much do we know? Trends Plant Sci. 9, 97-104 https://doi.org/10.1016/j.tplants.2003.12.005
  19. Nuernberger, T. and Scheel, D. (2001) Signal transmission in the plant immune response. Trends Plant Sci. 6, 372-379 https://doi.org/10.1016/S1360-1385(01)02019-2
  20. Oh, K.-J., Park, Y.-S., Lee, K.-A., Chung, Y.-J. and Cho, T.-J. (2004) Molecular characterization of a thiJ-like gene in Chinese cabbage. J. Biochem. Mol. Biol. 37, 343-350 https://doi.org/10.5483/BMBRep.2004.37.3.343
  21. Peart, J. R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D. C., Schauser, L., Jaggard, A. W., Xiao, S., Coleman, M. J., Dow, M., Jones, J. D. G., Shirasu, K. and Baulcombe, D. C. (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA 99, 10865-10869
  22. Penninckx, I. A. M., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., De Samblanx, G. W., Buchala, A., Metraux, J.-P., Manners, J. M. and Broekaert, W. F. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323 https://doi.org/10.1105/tpc.8.12.2309
  23. Pieterse, C. M. J. and van Loon, L. C. (1999) Salicylic acidindependent plant defence pathways. Trends Plant Sci. 4, 52- 58 https://doi.org/10.1016/S1360-1385(98)01364-8
  24. Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. and Greenberg, J. T. (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11, 1695-1708 https://doi.org/10.1105/tpc.11.9.1695
  25. Rusterucci, C., Aviv, D. H., Holt III, B. F., Dangl, J. L. and Parker, J. E. (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13, 2211-2224 https://doi.org/10.1105/tpc.13.10.2211
  26. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  27. Ryang, S.-H., Chung, S.-Y., Lee, S.-H., Cha, J.-S., Kim, H. Y. and Cho, T.-J. (2002) Isolation of pathogen-induced Chinese cabbage genes by subtractive hybridization employing selective adaptor ligation. Biochem. Biophys. Res. Commun. 299, 352- 359 https://doi.org/10.1016/S0006-291X(02)02639-6
  28. Shenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C. and Manners, J. M. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl Acad. Sci. USA 97, 11655-11660
  29. Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913-916 https://doi.org/10.1038/35002628
  30. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.-S., Han, B., Zhu, T., Zou, G. and Katagiri, F. (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330 https://doi.org/10.1105/tpc.007591
  31. Terras, F. R. G., Eggermont, K., Kovaleva, V., Ralkhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., van Leuven, F., Vanderleyden, J., Cammue, B. P. A. and Broekaert, W. F. (1995) Small cysteine-rich antifungal proteins from radish: Their role in host defense. Plant Cell 7, 573-588 https://doi.org/10.1105/tpc.7.5.573
  32. Terras, F. R. G., Penninckx, I. A. M. A., Goderis, I. J. and Broekaert, W. F. (1998) Evidence that the role of plant defensins in radish defense responses is independent of salicylic acid. Planta 206, 117-124 https://doi.org/10.1007/s004250050381
  33. Thomma, B. P. H., Eggermont, K., Penninckx, I. A. M. A., Mauchi-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. (1998) Separate jasmonate-dependent and salicylate-dependent defense pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95, 15107-15111
  34. van Wees, S. C. M., Chang, H.-S., Zhu, T. and Glazebrook, J. (2003) Characterization of the early response of Arabidopsis to Alternaria brassicola infection using expression profiling. Plant Physiol. 132, 606-617 https://doi.org/10.1104/pp.103.022186
  35. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49-59 https://doi.org/10.1105/tpc.3.1.49

Cited by

  1. Comparative analysis of expression profiles of counterpart gene sets between Brassica rapa and Arabidopsis thaliana during fungal pathogen Colletotrichum higginsianum infection vol.23, pp.5, 2006, https://doi.org/10.5511/plantbiotechnology.23.503
  2. Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.NT.04.2012.0041
  3. Characterization of a pathogenesis-related protein 4 (PR-4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities vol.61, pp.12, 2010, https://doi.org/10.1093/jxb/erq148
  4. Causes and consequences of plant-associated biofilms vol.64, pp.2, 2008, https://doi.org/10.1111/j.1574-6941.2008.00465.x
  5. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices vol.28, pp.2, 2009, https://doi.org/10.1007/s10059-009-0117-9
  6. PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi vol.3, pp.6, 2013, https://doi.org/10.1134/S2079059713060026
  7. Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV vol.3, pp.2, 2009, https://doi.org/10.1007/s11816-009-0084-9
  8. Application of proteomics to investigate stress-induced proteins for improvement in crop protection vol.30, pp.5, 2011, https://doi.org/10.1007/s00299-010-0982-x
  9. Generation of Chinese cabbage resistant to bacterial soft rot by heterologous expression of Arabidopsis WRKY75 vol.10, pp.5, 2016, https://doi.org/10.1007/s11816-016-0406-7
  10. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L. vol.7, 2016, https://doi.org/10.3389/fpls.2016.00695
  11. Identification of a cluster of PR4-like genes involved in stress responses in rice vol.168, pp.18, 2011, https://doi.org/10.1016/j.jplph.2011.07.013