DOI QR코드

DOI QR Code

Red Wine Prevents Brain Oxidative Stress and Nephropathy in Streptozotocin-induced Diabetic Rats

  • Montilla, Pedro (Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba) ;
  • Barcos, Montserrat (Servicio de Analisis Clinicos, Hospital Universitario Reina Sofia) ;
  • Munoz, Maria C. (Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba) ;
  • Bujalance, Inmaculada (Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba) ;
  • Munoz-Castaneda, Juan R. (Unidad de Higado, Departamento de Patologia, Hospital Universitario Reina Sofia) ;
  • Tunez, Isaac (Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba)
  • Published : 2005.09.30

Abstract

We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.

Keywords

References

  1. Abdel Wahab, Y. H., O'Harte, F. P., Ratcliff, H., McClenaghan, N. H., Barnett, C. R. and Flatt P. R. (1996) Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes 45, 1489-1496 https://doi.org/10.2337/diabetes.45.11.1489
  2. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 34, 479-500
  3. Agustin, A. J., Breipohl, W., Boker, T., Lutz, J. and Spitzbas, M. (1993) Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinpathy. Graefes Arch. Clin. Exp. Ophthalmol. 231, 647-650 https://doi.org/10.1007/BF00921959
  4. Anjaneyulu, M. and Chopra, K. (2004) Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 31, 244-248 https://doi.org/10.1111/j.1440-1681.2004.03982.x
  5. Auslander, W., Haire-Joshu, D., Houston, C., Rhee, C. W. and Williams, J. H. (2002) A controlled evaluation of staging diatary patterns to reduce the risk of diabetes in African-American women. Diabetes Care. 25, 809-814 https://doi.org/10.2337/diacare.25.5.809
  6. Baynes, J. W. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes. 40, 405-412 https://doi.org/10.2337/diabetes.40.4.405
  7. Baynes, J. W. and Thorpe, R. (1999) Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes. 38, 1-9 https://doi.org/10.2337/diabetes.48.1.1
  8. Biessels, G. J., Bravenboer, G. and Gispen, W. H. (2004) Glucose, insulin and the brain: modulation and synaptic plasticity in health and disease: a preface. Eur. J. Pharmacol. 490, 1-4 https://doi.org/10.1016/j.ejphar.2004.02.057
  9. Biessels, G. J., Kappelle, A. C., Bravenboer, B., Erkelens, D. W. and Gispen, W. H. (1994) Cerebral function in diabetes mellitus. Diabetologia. 37, 643-650 https://doi.org/10.1007/BF00417687
  10. Biessels, G. J., van der Heide, L. P., Kamal, A., Bleys, R. L. and Gispen, W. H. (2002) Ageing and diabetes: implications for brain function. Eur. J. Pharmacol. 44, 1-14 https://doi.org/10.1016/0014-2999(77)90109-1
  11. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  12. Coldiron, A. D., Sanders, R. A. and Watkins, J. B. (2002) Effects of combined quercetin and Coenzyme $Q_{10}$ treatment on oxidative stress in normal and diabetic rats. J. Biochem. Mol. Toxicol. 16, 197-202. https://doi.org/10.1002/jbt.10035
  13. Constant, J. (1997) Alcohol, ischemic heart disease and the French paradox. Coron. Artery Dis. 8, 645-649 https://doi.org/10.1097/00019501-199710000-00007
  14. Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  15. Forbes, J. M., Cooper, M. E., Oldfield, M. D. and Thomas, M. C. (2003) Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 254-258 https://doi.org/10.1097/01.ASN.0000077413.41276.17
  16. Gispen, W. H. and Biessels, G. J. (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23, 542-549 https://doi.org/10.1016/S0166-2236(00)01656-8
  17. Giugliano, D., Ceriello, A. and Paolisso, G. (1996) Oxidative stress and diabetic vascular complications. Diabetes Care. 19, 257-267 https://doi.org/10.2337/diacare.19.3.257
  18. Ha, H. and Kim, K. H. (1995) Role of oxidative stress in the development of diabetic nephropathy. Kidney Int. 48, 18-21
  19. Herr, R. R., Jahnke, A. D. and Argoudelis, A. D. (1967) The structure of streptozotocin. J. Am. Chem. Soc. 89, 4808-4809 https://doi.org/10.1021/ja00994a053
  20. Hunt, J. V., Bottoms, M. A. and Mitchinson, M. J. (1993) Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation: Some fundamental differences in proposed mechanism of glucose oxidation and oxidant production. Biochem. J. 291, 259-262
  21. Hunt, J. V., Smith, C. and Wolff, S. P. (1990) Autoxidative glycosilation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 39, 1420-1424 https://doi.org/10.2337/diabetes.39.11.1420
  22. Hyslop, P. A., Hinshwa, D. B. and Halsey, W. H. Jr. (1988) Mechanism of oxidant-mediated cell injury: the glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 263, 1665-1675
  23. Kakkar, R., Kalra, J. and Mantha, S. V. (1995) Prasad K. Lipid peroxidtion and activity of antioxidant enzymes in diabetic rats. Mol. Cell Biochem. 151, 113-119 https://doi.org/10.1007/BF01322333
  24. Maggi-Caperyon, M. F., Cases, J., Badia, E., Cristol, J. P., Rouanet, J. M., Besancon, P., Leger, C. L. and Descomps, B. (2002) A diet high in cholesterol and deficient in vitamin E induces peroxidtion but does not enhance antioxidant enzyme expression in rat liver. J. Nutr. Biochem. 13, 296-301 https://doi.org/10.1016/S0955-2863(01)00222-4
  25. McCall, A. L. (1992) The impact of diabetes on the CNS. Diabetes. 41, 557-570 https://doi.org/10.2337/diabetes.41.5.557
  26. Montilla, P., Barcos, M., Muñoz, M. C., Munoz-Castaneda, J. R., Bujalance, I. and Túnez, I. (2004) Protective effect of Montilla-Moriles appellation red wine on oxidative stress induced by streptozotocin in the rat. J. Nutr. Biohcem. 15, 688-693 https://doi.org/10.1016/j.jnutbio.2004.06.006
  27. Montilla, P., Vargas, J., Tunez, I., Munoz, M. C., Valdelvira, M. E. and Cabrera, E. (1998) Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J. Pineal Res. 25, 94-100 https://doi.org/10.1111/j.1600-079X.1998.tb00545.x
  28. Mosmann, B. and Behl, C. (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin. Investig. Drugs. 11, 1407-1435 https://doi.org/10.1517/13543784.11.10.1407
  29. Munoz, M. C., Túnez, I., Porras, T. and Montilla, P. (1993) Curso evolutivo de la glucose, fructosamina y lipoperoxidos plasmaticos en ratas diabeticas por estreptozotocina. Efectos de la vitamina E. Clin. Invest. Arterioscler. 5, 114-117
  30. Oberdley, L. W. (1988) Free radicals and diabetes. Free Radic. Biol. Med. 5, 113-124 https://doi.org/10.1016/0891-5849(88)90036-6
  31. Rauscher, F. M., Sanders, R. A., Watkins, J. B. (2000) Effects of new antioxidant compounds PNU-104067F and PNU-74389G on antioxidant defense in normal and diabetic rats. J. Biochem. Mol. Toxicol. 14, 189-194 https://doi.org/10.1002/(SICI)1099-0461(2000)14:4<189::AID-JBT2>3.0.CO;2-V
  32. Ruiz, C., Alegria, A., Barbera, R., Farre, R. and Lagarda, M. J. (1994) Lipid peroxidation and antioxidant enzyme activities in patient with type-I diabetes mellitus. Scand. J. Clin. Lab. Invest. 59, 99-105 https://doi.org/10.1080/00365519950185823
  33. Saini, H. K., Arneja, A. S. and Dhalla, N. S. (2004) Role of cholesterol in cardiovascular dysfunction. Can. J. Cardiol. 20, 333-346
  34. Sanders, R. A., Rauscher, F. M. and Watkins, J. B. (2001) Effect of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 15, 143-149 https://doi.org/10.1002/jbt.11
  35. Sabu, M. C., Smith, K. and Kuttan, R. (2002) Anti-ciabetic activity of green tea poolyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83, 109-116 https://doi.org/10.1016/S0378-8741(02)00217-9
  36. Serrano-Martinez, M., Martínez-Losada, E., Prado-Santamaria, M., Brugarola-Brufau, C., Fenandez-Jarne, E. and Martinez-Gonzalez, M. A. (2004) To what extent are the effects of diet on coronary Herat disease lipid-mediated? Int. J. Cardiol. 95, 35-38 https://doi.org/10.1016/j.ijcard.2003.03.001
  37. Sun, Y., Oberley, L. W. and Li, Y. (1998) A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34, 479-500
  38. Szkudelski, T. (2001) The mechanism of alloxan and streptozotocin action in b-cells of the rat pancreas. Physiol. Res. 50, 536-546
  39. Tredici, G., Miloso, M., Nicolini, G., Galbiati, S., Cavalletti, G. and Bertelli, A. (1999) Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp. Clin. Res. 25, 673-680
  40. Virgili, M. and Contestabile, A. (2000) Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-reveratrol in rats. Neurosci. Lett. 281, 123-126 https://doi.org/10.1016/S0304-3940(00)00820-X
  41. Vessal, M., Hemmati, M. and Vasei, M. (2003) Antidiabetic effects of quercetin in streptozotocin-induced diabetic rats. Comp. Biochem. Physiol. C. 135, 357-364 https://doi.org/10.1016/S1095-6433(03)00090-4
  42. Wolf, S. P., Jiang, J. Y. and Hunt, J. V. (1991) Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 10, 339-352 https://doi.org/10.1016/0891-5849(91)90040-A

Cited by

  1. A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways vol.94, pp.6, 2012, https://doi.org/10.1016/j.biochi.2012.03.003
  2. Evaluation of nephroprotective, diuretic, and antioxidant activities ofplectranthus amboinicuson acetaminophen-induced nephrotoxic rats vol.20, pp.4, 2010, https://doi.org/10.3109/15376511003736787
  3. Exogenous Hydrogen Sulfide (H2S) Reduces Blood Pressure and Prevents the Progression of Diabetic Nephropathy in Spontaneously Hypertensive Rats vol.34, pp.2, 2012, https://doi.org/10.3109/0886022X.2011.643365
  4. The effect of ascorbic acid supplementation on brain oxidative events in experimental diabetes vol.19, pp.4, 2010, https://doi.org/10.1007/s00044-009-9196-6
  5. The protective effect of aminoguanidine on doxorubicin-induced nephropathy in rats vol.26, pp.1, 2012, https://doi.org/10.1002/jbt.20422
  6. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus vol.7, pp.4, 2016, https://doi.org/10.1111/jdi.12459
  7. Zinc Chloride Protects against Streptozotocin-Induced Diabetic Nephropathy in Rats vol.07, pp.08, 2016, https://doi.org/10.4236/pp.2016.78041
  8. Hypertension aggravates glomerular dysfunction with oxidative stress in a rat model of diabetic nephropathy vol.80, pp.15, 2007, https://doi.org/10.1016/j.lfs.2006.11.054
  9. The Protective Effect of Fucoidan in Rats with Streptozotocin-Induced Diabetic Nephropathy vol.12, pp.6, 2014, https://doi.org/10.3390/md12063292
  10. Identification by a differential proteomic approach of the induced stress and redox proteins by resveratrol in the normal and diabetic rat heart vol.12, pp.5a, 2008, https://doi.org/10.1111/j.1582-4934.2008.00227.x
  11. Curcumin protects rats against acetaminophen-induced hepatorenal damages and shows synergistic activity with N-acetyl cysteine vol.628, pp.1-3, 2010, https://doi.org/10.1016/j.ejphar.2009.11.027
  12. Polyphenolic Extract ofIchnocarpus FrutescensAttenuates Diabetic Complications in Streptozotocin-Treated Diabetic Rats vol.30, pp.3, 2008, https://doi.org/10.1080/08860220701857449
  13. Proatherosclerotic effects of chronic stress in male rats: Altered phenylephrine sensitivity and nitric oxide synthase activity of aorta and circulating lipids vol.12, pp.4, 2009, https://doi.org/10.1080/10253890802437779
  14. Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress vol.39, pp.6, 2016, https://doi.org/10.1007/s40618-015-0414-4
  15. Changes in Prooxidant–Antioxidant Balance in Tissues of Rats Following Long-term Hyperglycemic Status vol.36, pp.3, 2011, https://doi.org/10.3109/07435800.2011.566237
  16. Rhizoma Extracts on Early Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats vol.11, pp.2, 2008, https://doi.org/10.1089/jmf.2007.578
  17. Unusual clustering of coefficients of variation in published articles from a medical biochemistry department in India vol.23, pp.3, 2009, https://doi.org/10.1096/fj.08-108910