DOI QR코드

DOI QR Code

Hybrid 'Sinta' Papaya Exhibits Unique ACC Synthase 1 cDNA Isoforms

  • Hidalgo, Marie-Sol P. (Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Banos, College) ;
  • Tecson-Mendoza, Evelyn Mae (Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Banos, College) ;
  • Laurena, Antonio C. (Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Banos, College) ;
  • Botella, Jose Ramon (Plant Genetic Engineering Laboratory, School of Life Sciences, University of Queensland, Brisbane)
  • Published : 2005.05.31

Abstract

Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA(AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.

Keywords

References

  1. Ayliff, M. A., Frost, D. V., Finnegan, E. J., Lawrence, G. J., Anderson, P. A. and Ellis, J. G. (1999) Analysis of the flax L6 rust resistance gene. Plant J. 17, 287-292 https://doi.org/10.1046/j.1365-313X.1999.00377.x
  2. Chan, Y. K. (1987) Backcross method in improvement of papaya (Carica papaya L.). Malays. Appl. Biol. 16, 95-100
  3. Conley, E. C., Saunders, V. A. and Saunders, J. R. (1988) Deletion and rearrangement of plasmid DNA during transformation of Escherichia coli with linear plasmid molecules. Nucleic Acids Res. 14, 8905-8917 https://doi.org/10.1093/nar/14.22.8905
  4. Doyle, J. J. and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13-15
  5. Harada, T., Sunako, T., Sakuraba, W., Goto, S., Senda, M., Akada, S. and Niizeki, M. (1997) Genomic nucleotide sequence of a ripening-related 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) in apple (accession number U89156). Plant Physiol. 113, 1465
  6. Huang, P. l., Parks J. E., Rottmann, W. H. and Theologis, A. (1991) Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc. Natl. Acad. Sci. USA 88, 7021-7025
  7. Informax Inc. (1998) Vector NTI Suite. Version 5.1, USA
  8. Kawakita, K., Hennig, L., Lincoln, J. E., Rottmann, W. H., Campbell, A. D., Zarembinski, T., Yu, G. Y., Taylor, L. D. and Theologis, A. (1994) Le-ACS3 sequence, Accession number LEU18055
  9. Kazan, K. (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci. 8, 468-471 https://doi.org/10.1016/j.tplants.2003.09.001
  10. Kong, J., Kong, J.-M., Zhang, Z.-G., Zhang, J.-S., Chen, S.-Y. (2003) A new AOX homologous gene OsIM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress. Theor. Appl. Genet. 107, 326-331 https://doi.org/10.1007/s00122-003-1250-z
  11. Laurena, A. C., Magdalita, P. M., Hidalgo, M. S. P., Villegas, V. N., Mendoza, E. M. T. and Botella, J. R. (2002) Cloning and molecular characterization of ripening-related ACC synthase from papaya fruit (Carica papaya L). Acta Hort. 575, 163-170
  12. Li, N. and Matoo, A. K. (1994) Deletion of the COOH terminal region of ACC synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. J. Biol. Chem. 269, 6908-6917
  13. Li, N., Parsons, B. L., Liu, D. and Mattoo, A. K. (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol. Biol. 18, 477-487 https://doi.org/10.1007/BF00040664
  14. Liang, X., Abel, S., Keller, J. A., Shen, N. F. and Theologis, A. (1992) The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc. Acad. Nalt. Sci. USA 89, 11046-11050
  15. Lincoln, J. E., Campbell, J. E., Oetiker, J., Rottmann, W. H., Oeller, P. W., Shen, N. F. and Theologis, A. (1993) LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-1- carboxylate synthase gene of tomato (Lycopersicon esculentum). J. Biol. Chem. 265, 19422-19430
  16. Mason, M. G. and Botella, J. R. (1997) Identification of two 1- aminocyclopropane-1-carboxylate (ACC) synthase cDNAs expressed during papaya (Carica papaya) fruit ripening. Aust. J. Plant Physiol. 24, 239-244 https://doi.org/10.1071/PP96111
  17. Nakagawa, N., Mori, H., Yamazaki, K. and Imaseki, H. (1991) Cloning of a complementary DNA for auxin-induced 1- aminocyclopropane-1-carboxylate synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol. 32, 1153-1163
  18. Neupane, K. R., Mukatira, U. T., Kato, C. and Stiles J. I. (1998) Cloning and characterization of fruit-expressed ACC synthase and ACC oxidase from papaya (Carica papaya L.). Acta Hort. 461, 329-337
  19. Oeller, P. W., Wong, L. M., Taylor, L. P., Pike, D. A. and Theologis, A. (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254, 437-439 https://doi.org/10.1126/science.1925603
  20. Olson, D. C., White, J. A., Edelman, L., Harkins R. N. and Kende, H. (1991) Differential expression of two genes from 1- aminocyclopropane-1-carboxylate synthase in tomto fruits. Proc. Natl. Acad. Sci. USA 88, 5340-5344
  21. Olson, D. C., Oetiker, J. H. and Yang, S. F. (1995) Analysis of LE-ACS 3, an ACC synthase gene expressed during flooding in the roots of tomato plants. J. Biol. Chem. 270, 14056-14061 https://doi.org/10.1074/jbc.270.23.14056
  22. Padgett, R. A., Grabowski, P. J., Konaska, M. M., Seiler, S. and Sharp, P. A. (1986) Splicing of messenger RNA precursors. Ann. Rev. Biochem. 55, 1119-1150 https://doi.org/10.1146/annurev.bi.55.070186.005351
  23. Peck, S. C. and Kende, H. (1998) A gene encoding 1- aminocyclopropane-1-carboxylate (ACC) synthase produces two transcripts: elucidation of a conserved response. Plant J. 14, 573-581 https://doi.org/10.1046/j.1365-313X.1998.00156.x
  24. Rottman, W. H., Peter, G. F., Oeller, P. W., Keller, J. A., Shen N. F., Nagy, B. P., Taylor, L. P., Cambvell, A. D. and Theologis, A. (1991) 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol. 222, 937-961 https://doi.org/10.1016/0022-2836(91)90587-V
  25. Shiu, O. Y., Oetiker, J. H., Yip, W. K. and Yang, S. F. (1998) The promoter of LE-ACS7, an early flooding-induced 1- aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc. Natl. Acad. Sci. USA 95, 10334-10339
  26. Stiles, J. I., Lemme, C., Sondur, S., Morshidi, M. B. and Manshardt, R. (1993) Using randomly amplified polymorphic DNA for evaluating relationships among papaya cultivars. Theor. Appl. Genet. 85, 697-701 https://doi.org/10.1007/BF00225007
  27. Spanu, P., Boller T. and Kende, H. (1993) Differential accumulation of transcripts of 1-aminocyclopropane-1- carboxylate synthase genes in tomato plants infected with Phytophthora infestans and in elicitor-treated tomato cell suspension. J. Plant Physiol. 141, 557-562 https://doi.org/10.1016/S0176-1617(11)80456-6
  28. ten-Have A. and Woltering, E. J. (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol. Biol. 34, 89-97 https://doi.org/10.1023/A:1005894703444
  29. Yip, W. K., Dong, J. G., Kenny, J. W., Thompson, G. A. and Yang, S. F. (1990) Characterization and sequencing of the active site of 1-aminocyclopropyl-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA 87, 7930-7934
  30. Yang, S. F. and Hoffman, N. E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 67, 1207-1214
  31. Zarembinski, T. I. and Theologis, A. (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579- 1597 https://doi.org/10.1007/BF00016491

Cited by

  1. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis vol.16, pp.2, 2015, https://doi.org/10.3390/ijms16024136