DOI QR코드

DOI QR Code

Polyphosphoinositides Are Derived from Ether-linked Inositol Glycerophospholipids in Rat Brain

  • Shin, Sun-H. (Lipid Chemistry Laboratory, Kyungpook National University) ;
  • Kim, Jong-S. (Lipid Chemistry Laboratory, Kyungpook National University) ;
  • Kim, Hak-R. (Lipid Chemistry Laboratory, Kyungpook National University) ;
  • Lim, Jin-K. (Lipid Chemistry Laboratory, Kyungpook National University) ;
  • Choi, Byung-K. (Lipid Chemistry Laboratory, Kyungpook National University) ;
  • Yeo, Young-K. (Lipid Chemistry Laboratory, Kyungpook National University)
  • Published : 2005.05.31

Abstract

Membrane inositol glycerophospholipid (IGP) is metabolized to phosphatidylinositol-4-phosphate (PIP), phosphatidylinositol-4, 5-bisphosphate ($PIP_2$), and inositol triphosphate ($IP_3$) in signaling transduction. This study was carried out to determine the subclasses of IGP involved in signaling pathway. The acyl chain moieties of the phospholipids are easily modulated by dietary fatty acids. We analyzed acyl chain composition of IGP 3-subclasses, PIP and $PIP_2$ from rat brain after feeding sunflower seed oil enriched with linoleic acid or fish oil high in eicosapentaenoic acid and docosahexaenoic acid. Long chain polyunsaturated fatty acids (LCPUFA) as eicosapentaenoic acid and docosahexaenoic acid were not incorporated into ether-linked IGP (alkenylacylglycerophosphoinositol and alkylacyl-glycerophosphoinositol), PIP and $PIP_2$, while diacyl-glycerophosphoinositol (GPI) contained high LCPUFA. These results suggest that PIP might be phosphorylated from only the ether-linked IGP (alkenylacyl- and alkylacyl species) but not from diacyl subclass for signals to intracellular responses in the plasma membrane of rat brain.

Keywords

References

  1. Alsted, A.-L. and Hoy, C.-E. (1992) Fatty acid profiles of brain phospholipid subclasses of rats fed n-3 polyunsaturated fatty acids of marine or vegetable origin. A two generation study. Biochim. Biophys. Acta 1125, 237-244 https://doi.org/10.1016/0005-2760(92)90051-V
  2. Bernett, J. T., Meredith, N. K., AKins, J. R. and Hannon, W. H. (1985) Determination of srum phospholipid metabolic profiles by high performance liquid chromatography. J. Liquid Chromatogr. 8, 1573-1591 https://doi.org/10.1080/01483918508074080
  3. Berridge, M. J. (1993) Inositol triphosphate and calcium signaling. Nature 361, 315-326 https://doi.org/10.1038/361315a0
  4. Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H. (1984) 12-O-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets. FEBS Lett. 173, 389- 390 https://doi.org/10.1016/0014-5793(84)80811-X
  5. Chilvers, E. R., Batty, I. H., Challiss, R. A. J. and Barnes, P. J. (1991) Determination of mass changes in phosphatidylinositol 4,5-isphosphate and evidence for agonist-stimulated metabolism of inositol 1,4,5-triphosphate in airway smooth muscle. Biochem. J. 275, 373-379
  6. Curstedt, T. (1983) Chromatographic analysis, isolation and characterization of ether lipids; in Ether Lipids, Mangold, H. K. and Paltauf, F. (eds.), pp. 1-15, Academic Press, New York, USA
  7. Darnell, J. C., Osterman, D. G. and Saltiel, A. R. (1991) Synthesis of phosphatidylinositol in rat liver microsomes in accompanied by the rapid formation of lysophosphatidylinositol. Biochim. Biophys. Acta 1084, 269-278 https://doi.org/10.1016/0005-2760(91)90069-T
  8. Englund, P. T. (1993) The structure and biosynthesis of glicosyl phosphatidylinositol protein anchors. Annu. Rev. Biochem. 62, 121-138 https://doi.org/10.1146/annurev.bi.62.070193.001005
  9. Granoff, B. W. (1987) Inositol lipid turnover in the central nervous system; in Inositol Lipids in Cellular Signaling, Michell, R. H. and Putney, J. W. (eds.), pp. 163-165, Cold Spring Harbor, New York, USA
  10. Holub, B. J. and Skeaff, C. M. (1987) Nutritional regulation of cellular phosphatidylinositol. Methods Enzymol. 141, 234-244 https://doi.org/10.1016/0076-6879(87)41071-9
  11. Johnso, S. C., Dahl, J., Shih, T. L., Schedler, D. J. A., Anderson, L., Benjamin, T. L. and Baker, D. C. (1993) Synthesis and evalution of 3-modified 1D-myo-inositols as inhibitors and substrates of phosphatidylinositol synthase and inhibitors of myo-inositol uptake by cells. J. Med. Chem. 36, 3628-3635 https://doi.org/10.1021/jm00075a018
  12. Low, M. G. and Saltiel, A. R. (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239, 268-275 https://doi.org/10.1126/science.3276003
  13. Medh, J. D. and Weigel, P. H. (1989) Separation of phosphatidylinositols and other phospholipids by two-step onedimensional thin-layer chromatography. J. Lipid Res. 30, 761- 764
  14. Munnik, T., Irvine, R. F. and Musgrave, A. (1994) Rapid turnover of phosphatidylinositol 3-phosphate in the green alga chlamydomonas eugametos: signs of a phosphatidylinositide 3- kinase signalling pathway in lower plants? Biochem. J. 298, 269-273
  15. Ohnuma, M. and Mabuchi, I. (1993) 45K Actin filament-severing protein from sea urchin eggs: Interaction with phosphatidylinositol 4,5-bisphosphate. J. Biochem. 114, 718-722
  16. Palmer, F. B., Theolis R. Jr., Cook, H. W. and Byers, D. M. (1994) Purification of two immunologically related phosphatidylinositol-4,5-bisphosphate phosphatases from bovine brain cytosol. J. Biol. Chem. 269, 3403-3410
  17. Park, J. H., Park, E. J., Kim, K. S. and Yeo, Y. K. (1995) Changes in ether-linked phospholipids in rat kidney by dietary alpha-linolenic acid in vivo. Lipids 30, 541-546 https://doi.org/10.1007/BF02537029
  18. Rahmant, S. M., Huda, M. N., Uddin, M. N. and Akhteruzzaman, S. (2002) Short-term administration of conjugated linoleic acid reduces liver triglyceride concentration and phosphatidate phosphohydrolase activity in OLETF rats. J. Biochem. Mol. Biol. 35, 494-497 https://doi.org/10.5483/BMBRep.2002.35.5.494
  19. Rameh, L. E., Tolias, K. T., Duckworth, B. and Cantley, L. C. (1997) A new pathway for synthesis of phosphatidylinositol- 4,5-bisphosphate. Nature 390, 192-196 https://doi.org/10.1038/36621
  20. Sen, N. and Chander, A. (1994) Alkalosis- and ATP-induced increases in the diacylglycerol pool in alveolar type II cells are derived from phosphatidylcholine and phosphatidylinositol. Biochem. J. 298, 681-687
  21. Yamauchi, K., Holt, K. and Pessin, J. E. (1993) Phosphatidylinositol 3-kinase functions upstream of ras and raf in mediating insulin stimulation of c-fos transcription. J. Biol. Chem. 268, 14597-14600
  22. Yasutomi, N. (1992) Intracellular sinaling by hydrolysis of phospholipids and activation of protein C. Science 258, 607- 614 https://doi.org/10.1126/science.1411571
  23. Yeo, Y. K., Philbrick, D. J. and Holub, B. J. (1988) Altered acyl chain compositions of alkylacyl, alkenylacyl, and diacyl subclasses of choline and ethanolamine glycerophospholipids in rat heart by dietary fish oil. Biochim. Biophys. Acta 1001, 25- 30
  24. Yeo, Y. K., Philbrick, D. J. and Holub, B. J. (1989) Effects of dietary n-3 fatty acids on mass changes and [3H]glycerol incorporation in various glycerolipid classes in rat kidney in vivo. Biochim. Biophys. Acta 1006, 9-14 https://doi.org/10.1016/0005-2760(89)90316-0
  25. Yeo, Y. K., Philbrick, D. J. and Holub, B. J. (1989) The effect of dietary n-3 fatty acid on the incorporation of radioactivity into ether-linked renal phospholipids in rats following [1- 14C]hexadecanol injection; in Health Effects of Fish and Fish oil, Chandra, R. K. (ed.), pp. 525-536, ARTS Biochemical Publishers, St. John's, Canada
  26. Yeo, Y. K. and Holub, B. J. (1990) Influence of dietary fish oil on the relative syntheses of triacylglycerol and phospholipids in rat liver in vivo. Lipids 25, 811-814 https://doi.org/10.1007/BF02535902
  27. Yeo, Y. K., Lim, A. Y., Lee, J. Y., Kim, H. J., Tibor, F. and Kim, D. K. (1999) Eicosapentaenoic and docosahexaenoic acids reduce arachidonic acid release by rat kidney microsomes. J. Biochem. Mol. Biol. 32, 33-38
  28. Yeo, Y. K., Kim, J. S., Lee, J. R., Lee, J. Y., Chung, S. W., Kim, H. J., Horrocks, L. A. and Park, Y. S. (2000) Plasma phospholipids, including plasmalogens after consumption of diet enriched in long-chain n-3 fatty acids. J. Biochem. Mol. Biol. 33, 499-505

Cited by

  1. PI3K keeps the balance between metabolism and cancer vol.52, pp.3, 2012, https://doi.org/10.1016/j.jbior.2012.04.002