DOI QR코드

DOI QR Code

Interactions among Measles Virus Hemagglutinin, Fusion Protein and Cell Receptor Signaling Lymphocyte Activation Molecule (SLAM) Indicating a New Fusion-trimer Model

  • Zhang, Peng (National Key Lab of Virology, College of Life Scince, Wuhan University) ;
  • Li, Lingyun (National Key Lab of Virology, College of Life Scince, Wuhan University) ;
  • Hu, Chunlin (National Key Lab of Virology, College of Life Scince, Wuhan University) ;
  • Xu, Qin (National Key Lab of Virology, College of Life Scince, Wuhan University) ;
  • Liu, Xin (National Key Lab of Virology, College of Life Scince, Wuhan University) ;
  • Qi, Yipeng (National Key Lab of Virology, College of Life Scince, Wuhan University)
  • Published : 2005.07.31

Abstract

For measles viruses, fusion on the cell membrane is an important initial step in the entry into the infected cells. The recent research indicated that hemagglutinin firstly leads the conformational changes in the fusion protein then co-mediates the membrane fusion. In the work, we use the co-immunoprecipitation and pull-down techniques to identify the interactions among fusion protein, hemagglutinin and signaling lymphocyte activation molecule (SLAM), which reveal that the three proteins can form a functional complex to mediate the SLAM-dependent fusion. Moreover, under the confocal microscope, fusion protein and hemagglutinin protein can show the cocapping mediated by the SLAM. So fusion protein not only is involved in the fusion but also might directly interact with the SLAM to be a new fusion-trimer model, which might account for the infection mechanism of measles virus.

Keywords

References

  1. Alkhatib, G., Richardson, C. and Shen, S. H. (1990) Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virology 175, 262-270 https://doi.org/10.1016/0042-6822(90)90207-8
  2. Baker, K. A., Dutch, R. E., Lamb, R. A. and Jardetzky, T. S. (1999) Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell 3, 309-319 https://doi.org/10.1016/S1097-2765(00)80458-X
  3. Bellini, W. J., Rota, J. S. and Rota, P. A. (1994) Virology of measles virus. J. Infect. Dis. 170, 815-823
  4. Bitnun, A., Shannon, P., Durward, A., Rota, P. A., Bellini, W. J., Graham, C. and Wang, E. (1999) Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin. Infect. Dis. 29, 855-861 https://doi.org/10.1086/520449
  5. Buckland, R., Malvoisin, E., Beauverger, P. and Wild, T. F. (1992) A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J. Gen. Virol. 73, 1703-1707 https://doi.org/10.1099/0022-1317-73-7-1703
  6. Dorig, R. E., Marcil, A., Chopra, A. and Richardson, C. D. (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295-305 https://doi.org/10.1016/0092-8674(93)80071-L
  7. Ebata, S. N., Cote, M. J., Kang, C. Y. and Dimock, K. (1991) The fusion and hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus 3 are both required for fusion. Virology 183, 437-441 https://doi.org/10.1016/0042-6822(91)90162-5
  8. Erlenhoefer, C., Wurzer, W. J., Loffler, S., Schaulies, S. S., Meulen, V. T. and Schneider-Schaulies, J. (2001) CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J. Virol. 75, 4499-4505 https://doi.org/10.1128/JVI.75.10.4499-4505.2001
  9. Esolen, L. M., Ward, B. J., Moench, T. R. and Griffin, D. E. (1993) Infection of monocytes during measles. J. Infect. Dis. 168, 47-52 https://doi.org/10.1093/infdis/168.1.47
  10. Helene, V., Olga, A. and Branka, H. (1999) Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol. 73, 2212-2221
  11. Hu, C. L., Zhang, P., Liu, X., Qi, Y., Zou, T. T. and Xu, Q. (2004) Characterization of a region involved in binding of measles virus H protein and its receptor SLAM (CD150). Biochem. Biophys. Res. Commun. 316, 698-704 https://doi.org/10.1016/j.bbrc.2004.02.106
  12. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. and Richardson, C. D. (2001) CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9-21 https://doi.org/10.1006/viro.2000.0711
  13. Hsu, M. C., Scheid, A. and Choppin, P. W. (1981) Activation of the Sendai virus fusion protein (F) involved a conformational change with exposure of a new hydrophobic region. J. Biol. Chem. 256, 3557-3563
  14. Lambert, D. M., Barney, S., Lambert, A. L., Guthrie, K., Medinas, R., Davis, D. E., Bucy, T., Erickson, J., Merutka, G. and Petteway, S. R. (1996) Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc. Natl. Acad. Sci. USA 93, 2186-2191 https://doi.org/10.1073/pnas.93.5.2143
  15. Li, L. and Qi, Y. (2002) A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch. Virol. 147, 775-786 https://doi.org/10.1007/s007050200025
  16. Li, L., Liu, X., Zhang, P., Qi, Y. and Chen, M. (2002) Cloning and identification of measles virus receptor gene from marmoset cells. Chinese Sci. Bull. 47, 1679-1687 https://doi.org/10.1360/02tb9368
  17. Manie, S. N., Debreyne, S., Vincent, S. and Gerlier, D. (2000) Measles virus structural components are enriched into lipid raft microdomains.a potential cellular location for virus assembly. J. Virol. 74, 305-311 https://doi.org/10.1128/JVI.74.1.305-311.2000
  18. Maurice, R. H. (2002) Current overview of the pathogenesis and prophylaxis of measles with focus on practical implications. Vaccine 20, 651-665 https://doi.org/10.1016/S0264-410X(01)00384-X
  19. Naim, H. Y., Ehler, E. and Billeter, M. A. (2000) Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. Embo. J. 19, 3576-3585 https://doi.org/10.1093/emboj/19.14.3576
  20. Naniche, D., Krishnan, G. V., Cervoni, F., Wild, T. F., Rossi, B., Combe, C. R. and Gerlier, D. (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025-6032
  21. Orit, S. and Yechiel, S. (2001) Participation of two fusion peptides in measles virus-induced membrane fusion. emerging similarity with other paramyxoviruses. Biochemistry 40, 1340-1349 https://doi.org/10.1021/bi001533n
  22. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. and Yanagi, Y. (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J. Virol. 75, 4399-4401 https://doi.org/10.1128/JVI.75.9.4399-4401.2001
  23. Plemper, P. K., Erlandson, K. L., Lakdawala, A. S., Sun, A., Prussia, A., Boonsombat, J., Aki-Sener, E., Yalcin, I., Temiz-Arpaci, O., Tekiner, B., Liotta, D. C., Snyder, J. P. and Compans, R. W. (2004) A target site for template-based design of measles virus entry inhibitors. Proc. Natl. Acad. Sci. USA 101, 5628-5633 https://doi.org/10.1073/pnas.0308520101
  24. Plemper, R. K., Hammond, A. L. and Cattaneo, R. (2001) Measles virus envelope glycoproteins hetero-oligomerize in the endoplasmic reticulum. J. Biol. Chem. 47, 44239-44246
  25. Rahaman, A., Srinivasan, N., Shamala, N. and Shaila, M. S. (2003) The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly. Biochemistry 42, 922-931 https://doi.org/10.1021/bi026858d
  26. Rik, L. S., Helma, W. V. and Fons, G. C. M. U. (1998) Measles virus fusion protein and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. J. V. Methods 71, 35-44 https://doi.org/10.1016/S0166-0934(97)00188-2
  27. Schaulies, S. S. and Meulen, V. T. (2002) Measles virus and immunomodulation molecular bases and perspectives. Exp. Rev. Mol. Med. 4, 1-18
  28. Takeuchi, K., Miyajima, N., Nagata, N., Takeda, M. and Tashiro, M. (2003) Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM (CD150)-independent mechanism. Virus Res. 94, 11-16 https://doi.org/10.1016/S0168-1702(03)00117-5
  29. Tatsuo, H., Ono, N., Tanaka, K. and Yanagi, Y. (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893-897 https://doi.org/10.1038/35022579
  30. Vongpunsawad, S., Oezgun, N., Braun, W. and Cattaneo, R. (2004) Selectively receptor-blind measles viruses identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J. Virol, 78, 302-313 https://doi.org/10.1128/JVI.78.1.302-313.2004
  31. Wild, T. F. and Buckland, R. (1997) Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. J. Gen. Virol. 78, 107-111
  32. Wild, T. F., Malvoisin, E. and Buckland, R. (1991) Measles virus both the hemagglutinin and fusion glycoproteins are required for fusion, J. Gen. Virol. 72, 439-442 https://doi.org/10.1099/0022-1317-72-2-439
  33. Yao, Q., Hu, X. and Compans, R. W. (1997) Association of the parainfluenza virus fusion and hemagglutinin-neuraminidase glycoproteins on cell surfaces. J. Virol, 71, 650-656