DOI QR코드

DOI QR Code

Fine Tuning and Cross-talking of TGF-β Signal by Inhibitory Smads

  • Park, Seok-Hee (Department of Pathology and Research Institute of Medical Science, Inha University College of Medicine)
  • Published : 2005.01.31

Abstract

Transforming Growth Factor (TGF)-$\beta$ family, including TGF-$\beta$, bone morphorgenic protein (BMP), and activn, plays an important role in essential cellular functions such as proliferation, differentiation, apoptosis, tissue remodeling, angiognesis, immune responses, and cell adhesions. TGF-$\beta$ predominantly transmits the signals through serine/threonine receptor kinases and cytoplasmic proteins called Smads. Since the discovery of TGF-$\beta$ in the early 1980s, the dysregulation of TGF-$\beta$/Smad signaling has been implicated in the pathogenesis of human diseases. Among signal transducers in TGF-$\beta$/Smad signaling, inhibitory Smads (I-Smads), Smad6 and Smad7, act as major negative regulators forming autoinhibitory feedback loops and mediate the cross-talking with other signaling pathways. Expressions of I-Smads are mainly regulated on the transcriptional levels and post-translational protein degradations and their intracellular levels are tightly controlled to maintain the homeostatic balances. However, abnormal levels of I-Smads in the pathological conditions elicit the altered TGF-$\beta$ signaling in cells, eventually causing TGF-$\beta$-related human diseases. Thus, exploring the molecular mechanisms about the regulations of I-Smads may provide the therapeutic clues for human diseases induced by the abnormal TGF-$\beta$ signaling.

Keywords

References

  1. Afrakhte, M., Moren, A., Jossan, S., Itoh, S., Sampath, K., Westermark, B., Heldin, C. H., Heldin, N. E. and Ten Dijke, P. (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family members. Biochem. Biophys. Res. Commun. 249, 505-511 https://doi.org/10.1006/bbrc.1998.9170
  2. Akhurst, R. J. and Derynck, R. (2001) TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol. 11, 44-51
  3. Bai, S. and Cao, X. (2002) A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling. J. Biol. Chem. 277, 4176-4182 https://doi.org/10.1074/jbc.M105105200
  4. Bai, S., Shi, X., Yang, X. and Cao, X. (2000) Smad6 as a transcriptional corepressor. J. Biol. Chem. 275, 8267-8270 https://doi.org/10.1074/jbc.275.12.8267
  5. Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A. A., Rojkind, M. and Bottinger, E. P. (2000) A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 14, 187-197
  6. Blobe, G. C., Schiemann, W. P. and Lodish, H. F. (2000) Role of transforming growth factor beta in human disease. N. Engl. J. Med. 342, 1350-1358 https://doi.org/10.1056/NEJM200005043421807
  7. Brodin, G., Ahgren, A., ten Dijke, P., Heldin, C. H. and Heuchel, R. (2000) Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J. Biol. Chem. 275, 29023-29030 https://doi.org/10.1074/jbc.M002815200
  8. de Caestecker, M. P., Piek, E. and Roberts, A. B. (2000) Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 92, 1388-1402 https://doi.org/10.1093/jnci/92.17.1388
  9. Denissova, N. G. and Liu, F. (2004) Repression of endogenous Smad7 by Ski. J. Biol. Chem. 279, 28143-28148 https://doi.org/10.1074/jbc.M404961200
  10. Denissova, N. G., Pouponnot, C., Long, J., He, D. and Liu, F. (2000) Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. USA 97, 6397-6402 https://doi.org/10.1073/pnas.090099297
  11. Derynck, R., Zhang, Y. and Feng, X. H. (1998) Smads: transcriptional activators of TGF-beta responses. Cell 95, 737-740 https://doi.org/10.1016/S0092-8674(00)81696-7
  12. Dong, C., Zhu, S., Wang, T., Yoon, W., Li, Z., Alvarez, R. J., ten Dijke, P., White, B., Wigley, F. M. and Goldschmidt-Clermont, P. J. (2002) Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc. Natl. Acad. Sci. USA 99, 3908-3913 https://doi.org/10.1073/pnas.062010399
  13. Ebisawa, T., Fukuchi, M., Murakami, G., Chiba, T., Tanaka, K., Imamura, T. and Miyazono, K. (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477- 12480 https://doi.org/10.1074/jbc.C100008200
  14. Galvin, K. M., Donovan, M. J., Lynch, C. A., Meyer, R. I., Paul, R. J., Lorenz, J. N., Fairchild-Huntress, V., Dixon, K. L., Dunmore, J. H., Gimbrone, M. A., Jr., Falb, D. and Huszar, D. (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat. Genet. 24, 171-174 https://doi.org/10.1038/72835
  15. Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H. and Kern, S. E. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350-353 https://doi.org/10.1126/science.271.5247.350
  16. Hata, A., Lagna, G., Massague, J. and Hemmati-Brivanlou, A. (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186-197 https://doi.org/10.1101/gad.12.2.186
  17. Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y. Y., Grinnell, B. W., Richardson, M. A., Topper, J. N., Gimbrone, M. A., Jr., Wrana, J. L. and Falb, D. (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89, 1165-1173 https://doi.org/10.1016/S0092-8674(00)80176-2
  18. Heldin, C. H., Miyazono, K. and Ten Dijke, P. (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 https://doi.org/10.1038/37284
  19. Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M. and Miyazono, K. (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622-626 https://doi.org/10.1038/37848
  20. Ionescu, A. M., Drissi, H., Schwarz, E. M., Kato, M., Puzas, J. E., McCance, D. J., Rosier, R. N., Zuscik, M. J. and O'Keefe, R. J. (2004) CREB Cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter. J. Cell Physiol. 198, 428-440 https://doi.org/10.1002/jcp.10421
  21. Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., Sampath, T.K., Kato, M., and Miyazono, K. (2000) Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 6075-6079 https://doi.org/10.1074/jbc.275.1.9
  22. Ishisaki, A., Yamato, K., Hashimoto, S., Nakao, A., Tamaki, K., Nonaka, K., ten Dijke, P., Sugino, H. and Nishihara, T. (1999) Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells. J. Biol. Chem. 274, 13637-13642 https://doi.org/10.1074/jbc.274.19.13637
  23. Itoh, S., Landstrom, M., Hermansson, A., Itoh, F., Heldin, C. H., Heldin, N. E. and Ten Dijke, P. (1998) Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J. Biol. Chem. 273, 29195-29201 https://doi.org/10.1074/jbc.273.44.29195
  24. Kavsak, P., Rasmussen, R. K., Causing, C. G., Bonni, S., Zhu, H., Thomsen, G. H. and Wrana, J. L. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell 6, 1365-1375 https://doi.org/10.1016/S1097-2765(00)00134-9
  25. Kim, B. C., Lee, H. J., Park, S. H., Lee, S. R., Karpova, T. S., McNally, J. G., Felici, A., Lee, D. K. and Kim, S.-J. (2004) Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol. 24, 2251-2262 https://doi.org/10.1128/MCB.24.6.2251-2262.2004
  26. Kim, Y. H., Lee, H. S., Lee, H. J., Hur, K., Kim, W. H., Bang, Y. J., Kim, S. J., Lee, K. U., Choe, K. J. and Yang, H. K. (2004) Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann. Oncol. 15, 574-580 https://doi.org/10.1093/annonc/mdh131
  27. Kimura, N., Matsuo, R., Shibuya, H., Nakashima, K. and Taga, T. (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J. Biol. Chem. 275, 17647-17652 https://doi.org/10.1074/jbc.M908622199
  28. Kleeff, J., Ishiwata, T., Maruyama, H., Friess, H., Truong, P., Buchler, M. W., Falb, D. and Korc, M. (1999a) The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18, 5363-5372 https://doi.org/10.1038/sj.onc.1202909
  29. Kleeff, J., Maruyama, H., Friess, H., Buchler, M. W., Falb, D. and Korc, M. (1999b) Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem. Biophys. Res. Commun. 255, 268-273 https://doi.org/10.1006/bbrc.1999.0171
  30. Komuro, A., Imamura, T., Saitoh, M., Yoshida, Y., Yamori, T., Miyazono, K. and Miyazawa, K. (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23, 6914- 6923 https://doi.org/10.1038/sj.onc.1207885
  31. Lallemand, F., Mazars, A., Prunier, C., Bertrand, F., Kornprost, M., Gallea, S., Roman-Roman, S., Cherqui, G. and Atfi, A. (2001) Smad7 inhibits the survival nuclear factor kappaB and potentiates apoptosis in epithelial cells. Oncogene 20, 879-884 https://doi.org/10.1038/sj.onc.1204167
  32. Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., Ten Dijke, P. and Heldin, C. H. (2000) Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr. Biol. 10, 535-538 https://doi.org/10.1016/S0960-9822(00)00470-X
  33. Lin, X., Liang, Y. Y., Sun, B., Liang, M., Shi, Y., Brunicardi, F. C. and Feng, X. H. (2003) Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic proteininduced transcription. Mol. Cell. Biol. 23, 9081-9093 https://doi.org/10.1128/MCB.23.24.9081-9093.2003
  34. Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., Fan, R. S., Zborowska, E., Kinzler, K. W. and Vogelstein, B. (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336-1338 https://doi.org/10.1126/science.7761852
  35. Massague, J. (1998) TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791 https://doi.org/10.1146/annurev.biochem.67.1.753
  36. Massague, J. and Chen, Y. G. (2000) Controlling TGF-beta signaling. Genes Dev. 14, 627-644
  37. Massague, J. and Wotton, D. (2000) Transcriptional control by the TGF-beta/Smad signaling system. Embo J. 19, 1745-1754 https://doi.org/10.1093/emboj/19.8.1745
  38. Mazars, A., Lallemand, F., Prunier, C., Marais, J., Ferrand, N., Pessah, M., Cherqui, G. and Atfi, A. (2001) Evidence for a role of the JNK cascade in Smad7-mediated apoptosis. J. Biol. Chem. 276, 36797-36803 https://doi.org/10.1074/jbc.M101672200
  39. Monteleone, G., Kumberova, A., Croft, N. M., McKenzie, C., Steer, H. W. and MacDonald, T. T. (2001) Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J. Clin. Invest. 108, 601-609 https://doi.org/10.1172/JCI12821
  40. Murakami, G., Watabe, T., Takaoka, K., Miyazono, K. and Imamura, T. (2003) Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell. 14, 2809-2817 https://doi.org/10.1091/mbc.E02-07-0441
  41. Myeroff, L. L., Parsons, R., Kim, S. J., Hedrick, L., Cho, K. R., Orth, K., Mathis, M., Kinzler, K. W., Lutterbaugh, J. and Park, K. (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 55, 5545-5547
  42. Nagarajan, R. P., Zhang, J., Li, W. and Chen, Y. (1999) Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412-33418 https://doi.org/10.1074/jbc.274.47.33412
  43. Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H. and Ten Dijke, P. (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389, 631-635 https://doi.org/10.1038/37848
  44. Pasche, B. (2001) Role of transforming growth factor beta in cancer. J. Cell. Physiol. 186, 153-168 https://doi.org/10.1002/1097-4652(200002)186:2<153::AID-JCP1016>3.0.CO;2-J
  45. Patil, S., Wildey, G. M., Brown, T. L., Choy, L., Derynck, R. and Howe, P. H. (2000) Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factorbeta -induced growth inhibition and apoptosis. J. Biol. Chem. 275, 38363-38370 https://doi.org/10.1074/jbc.M004861200
  46. Quan, T., He, T., Voorhees, J. J. and Fisher, G. J. (2001) Ultraviolet irradiation blocks cellular responses to transforming growth factor-beta by down-regulating its type-II receptor and inducing Smad7. J. Biol. Chem. 276, 26349-26356 https://doi.org/10.1074/jbc.M010835200
  47. Roberts, A. B. and Sporn, M. B. (1990) The transforming growth factor-bs; in Peptide Growth Factors and Their Receptors, Sporn, M. B. and Roberts, A. B. (eds.), pp. 419-472, Springer- Verlag, Heidelberg, Germany
  48. Roberts, A. B. and Sporn, M. B. (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGFbeta). Growth Factors 8, 1-9 https://doi.org/10.3109/08977199309029129
  49. Schiffer, M., Schiffer, L. E., Gupta, A., Shaw, A. S., Roberts, I. S., Mundel, P. and Bottinger, E. P. (2002) Inhibitory smads and tgf-Beta signaling in glomerular cells. J. Am. Soc. Nephrol. 13, 2657-2666 https://doi.org/10.1097/01.ASN.0000033276.06451.50
  50. Souchelnytskyi, S., Nakayama, T., Nakao, A., Moren, A., Heldin, C. H., Christian, J. L., and Ten Dijke, P. (1998) Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J. Biol. Chem. 273, 25364-25370 https://doi.org/10.1074/jbc.273.39.25364
  51. Tajima, Y., Goto, K., Yoshida, M., Shinomiya, K., Sekimoto, T., Yoneda, Y., Miyazono, K. and Imamura, T. (2003) Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factorbeta signaling by Smad7. J. Biol. Chem. 278, 10716-10721 https://doi.org/10.1074/jbc.M212663200
  52. Takase, M., Imamura, T., Sampath, T. K., Takeda, K., Ichijo, H., Miyazono, K. and Kawabata, M. (1998) Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem. Biophys. Res. Commun. 244, 26-29 https://doi.org/10.1006/bbrc.1998.8200
  53. Thiagalingam, S., Lengauer, C., Leach, F. S., Schutte, M., Hahn, S. A., Overhauser, J., Willson, J. K., Markowitz, S., Hamilton, S. R., Kern, S. E., Kinzler, K. W. and Vogelstein, B. (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 13, 343-346 https://doi.org/10.1038/ng0796-343
  54. Topper, J. N., Cai, J., Qiu, Y., Anderson, K. R., Xu, Y. Y., Deeds, J. D., Feeley, R., Gimeno, C. J., Woolf, E. A., Tayber, O., Mays, G. G., Sampson, B. A., Schoen, F. J., Gimbrone, M. A., Jr. and Falb, D. (1997) Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc. Natl. Acad. Sci. USA 94, 9314-9319 https://doi.org/10.1073/pnas.94.17.9314
  55. Tsunobuchi, H., Ishisaki, A. and Imamura, T. (2004) Expressions of inhibitory Smads, Smad6 and Smad7, are differentially regulated by TPA in human lung fibroblast cells. Biochem. Biophys. Res. Commun. 316, 712-719 https://doi.org/10.1016/j.bbrc.2004.02.104
  56. Ulloa, L., Doody, J. and Massague, J. (1999) Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397, 710-713 https://doi.org/10.1038/16116
  57. von Gersdorff, G., Susztak, K., Rezvani, F., Bitzer, M., Liang, D. and Bottinger, E. P. (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275, 11320- 11326 https://doi.org/10.1074/jbc.275.15.11320
  58. Whitman, M. (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 12, 2445-2462 https://doi.org/10.1101/gad.12.16.2445
  59. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. and Thomsen, G. H. (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687-693 https://doi.org/10.1038/23293

Cited by

  1. Bone morphogenetic protein signal transduction in bone vol.22, pp.sup1, 2006, https://doi.org/10.1185/030079906X80576
  2. Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling vol.2, 2011, https://doi.org/10.1038/ncomms1469
  3. Unexpected activities of Smad7 in Xenopus mesodermal and neural induction vol.125, pp.5-6, 2008, https://doi.org/10.1016/j.mod.2008.02.002
  4. Cross-Species Comparison of Human and Mouse Intestinal Polyps Reveals Conserved Mechanisms in Adenomatous Polyposis Coli (APC)-Driven Tumorigenesis vol.172, pp.5, 2008, https://doi.org/10.2353/ajpath.2008.070851
  5. Identification of Novel Gene Expression in Healing Fracture Callus Tissue by DNA Microarray vol.4, pp.2, 2008, https://doi.org/10.1007/s11420-008-9087-2
  6. Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury penetrates intrathecally and elicits a functional signaling cascade vol.10, pp.1, 2010, https://doi.org/10.1016/j.spinee.2009.10.003
  7. Proliferation of rat small hepatocytes requires follistatin expression vol.227, pp.6, 2012, https://doi.org/10.1002/jcp.22971
  8. Evidence for TGF-ß1 and bleomycin intracellular signaling through autocrine regulation of Smad 3 binding to the proximal promoter of theSmad 7 gene vol.97, pp.5, 2006, https://doi.org/10.1002/jcb.20594
  9. Doxorubicin inhibits TGF-β signaling in human lung carcinoma A549 cells vol.590, pp.1-3, 2008, https://doi.org/10.1016/j.ejphar.2008.05.030
  10. Etoposide-induced Smad6 expression is required for the G1 to S phase transition of the cell cycle in CMT-93 mouse intestinal epithelial cells vol.40, pp.1, 2008, https://doi.org/10.3858/emm.2008.40.1.43
  11. Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-β and extracellular matrix proteins vol.9, pp.1, 2009, https://doi.org/10.1186/1471-230X-9-81
  12. Early Oral Ovalbumin Exposure during Maternal Milk Feeding Prevents Spontaneous Allergic Sensitization in Allergy-Prone Rat Pups vol.2012, 2012, https://doi.org/10.1155/2012/396232
  13. Smad signaling pathways regulate pancreatic endocrine development vol.378, pp.2, 2013, https://doi.org/10.1016/j.ydbio.2013.04.003
  14. Identification of early molecular pathways affected by paraquat in rat lung vol.225, pp.2-3, 2006, https://doi.org/10.1016/j.tox.2006.05.017
  15. Targeting bone morphogenetic protein signaling on renal and vascular diseases vol.19, pp.1, 2010, https://doi.org/10.1097/MNH.0b013e328332fc13
  16. Statistical Genetic Analysis of Serological Measures of Common, Chronic Infections in Alaska Native Participants in the GOCADAN Study vol.37, pp.7, 2013, https://doi.org/10.1002/gepi.21745
  17. Signaling Roadmap Modulating Naive and Primed Pluripotency vol.23, pp.3, 2014, https://doi.org/10.1089/scd.2013.0368
  18. Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis vol.52, pp.4, 2010, https://doi.org/10.1002/hep.23814
  19. A Smad Signaling Network Regulates Islet Cell Proliferation vol.63, pp.1, 2014, https://doi.org/10.2337/db13-0432
  20. Gene expression profiling of TGFβ2- and/or BMP7-treated trabecular meshwork cells: Identification of Smad7 as a critical inhibitor of TGF-β2 signaling vol.88, pp.6, 2009, https://doi.org/10.1016/j.exer.2009.01.002
  21. LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia vol.129, pp.1, 2014, https://doi.org/10.1111/jnc.12612
  22. Inhibition of connective tissue growth factor/CCN2 expression in human dermal fibroblasts by interleukin-1α and β vol.110, pp.5, 2010, https://doi.org/10.1002/jcb.22637
  23. Magnetite (Fe3O4) nanocrystals affect the expression of genes involved in the TGF-beta signalling pathway vol.7, pp.5, 2011, https://doi.org/10.1039/c0mb00192a
  24. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7 vol.111, pp.13, 2014, https://doi.org/10.1073/pnas.1321347111
  25. Bone morphogenetic protein-2/4 signalling pathway components are expressed in the human thymus and inhibit early T-cell development vol.121, pp.1, 2007, https://doi.org/10.1111/j.1365-2567.2007.02541.x
  26. Co-expression of bone morphogenetic protein 6 with estrogen receptor a in endometriosis vol.285, pp.4, 2012, https://doi.org/10.1007/s00404-011-2082-8
  27. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice vol.67, 2014, https://doi.org/10.1016/j.bone.2014.06.033
  28. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling vol.434, pp.1, 2011, https://doi.org/10.1042/BJ20101827
  29. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development vol.70, pp.16, 2013, https://doi.org/10.1007/s00018-012-1197-9
  30. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities vol.91, pp.6-7, 2012, https://doi.org/10.1016/j.ejcb.2011.07.002
  31. Regulation of TGF-  signaling by Smad7 vol.41, pp.4, 2009, https://doi.org/10.1093/abbs/gmp018
  32. Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGF-β/Smad Signaling Pathway vol.9, pp.22, 2013, https://doi.org/10.1002/smll.201300607
  33. The role of brinker in eggshell patterning vol.123, pp.5, 2006, https://doi.org/10.1016/j.mod.2006.03.007
  34. Smad6 inhibits non-canonical TGF-β1 signalling by recruiting the deubiquitinase A20 to TRAF6 vol.4, 2013, https://doi.org/10.1038/ncomms3562
  35. Osteogenic-related gene expression profiles of human dental follicle cells induced by dexamethasone1 vol.29, pp.9, 2008, https://doi.org/10.1111/j.1745-7254.2008.00834.x
  36. Integrins in lens development and disease vol.88, pp.2, 2009, https://doi.org/10.1016/j.exer.2008.06.020
  37. The role of TGF-β in the pathogenesis of primary open-angle glaucoma vol.347, pp.1, 2012, https://doi.org/10.1007/s00441-011-1274-7
  38. TGF-� Signaling in Onset and Progression of Hepatocellular Carcinoma vol.30, pp.5, 2012, https://doi.org/10.1159/000341704
  39. The Role of TGF-β2 and Bone Morphogenetic Proteins in the Trabecular Meshwork and Glaucoma vol.30, pp.2-3, 2014, https://doi.org/10.1089/jop.2013.0220
  40. BMP-7/TGF-β1 signalling in myoblasts: Components involved in signalling and BMP-7-dependent blockage of TGF-β-mediated CTGF expression vol.91, pp.6-7, 2012, https://doi.org/10.1016/j.ejcb.2011.09.004
  41. Transcriptional changes in bone marrow stromal cells of patients with heart failure vol.13, pp.9, 2014, https://doi.org/10.4161/cc.28472
  42. Zinc Finger DHHC-Type Containing 13 Regulates Fate Specification of Ectoderm and Mesoderm Cell Lineages by Modulating Smad6 Activity vol.23, pp.16, 2014, https://doi.org/10.1089/scd.2014.0068
  43. Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling vol.114, pp.38, 2017, https://doi.org/10.1073/pnas.1705755114
  44. Smad7 is a transforming growth factor-beta–inducible mediator of apoptosis in granulosa cells vol.97, pp.6, 2012, https://doi.org/10.1016/j.fertnstert.2012.03.024
  45. TGF-?: a mobile purveyor of immune privilege vol.213, pp.1, 2006, https://doi.org/10.1111/j.1600-065X.2006.00437.x
  46. Effect of the cyclic stretch on the expression of osteogenesis genes in human periodontal ligament cells vol.491, pp.2, 2012, https://doi.org/10.1016/j.gene.2011.09.031
  47. Fine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6 vol.32, pp.7, 2013, https://doi.org/10.1038/emboj.2013.38
  48. Growth and differentiation factors for cartilage healing and repair vol.39, pp.1, 2008, https://doi.org/10.1016/j.injury.2008.01.035
  49. Effects of osthole, psoralen, aconitine on breast cancer MDA-MB-231BO cell line inhibition in vitro vol.9, pp.10, 2011, https://doi.org/10.3736/jcim20111012
  50. Biomarker candidates for cardiovascular disease and bone metabolism disorders in chronic kidney disease: a systems biology perspective vol.12, pp.4, 2008, https://doi.org/10.1111/j.1582-4934.2008.00280.x
  51. Maintenance of a normal thymic microenvironment and T-cell homeostasis require Smad4-mediated signaling in thymic epithelial cells vol.112, pp.9, 2008, https://doi.org/10.1182/blood-2008-04-150532
  52. Effects of p-CREB-1 on transforming growth factor-β3 auto-regulation in hepatic stellate cells vol.112, pp.4, 2011, https://doi.org/10.1002/jcb.23017
  53. Gualou Xiebai Decoction prevents myocardial fibrosis by blocking TGF-beta/Smad signalling vol.65, pp.9, 2013, https://doi.org/10.1111/jphp.12102
  54. Modulation of extracellular matrix turnover in the trabecular meshwork vol.88, pp.4, 2009, https://doi.org/10.1016/j.exer.2009.01.005
  55. Pentoxifylline Attenuates Transforming Growth Factor-β1-Stimulated Elastogenesis in Human Tunica Albuginea-Derived Fibroblasts Part 2: Interference in a TGF-β1/Smad-Dependent Mechanism and Downregulation of AAT1 vol.7, pp.5, 2010, https://doi.org/10.1111/j.1743-6109.2010.01749.x
  56. miR-21 is involved in norepinephrine-mediated rat granulosa cell apoptosis by targeting SMAD7 vol.58, pp.4, 2017, https://doi.org/10.1530/JME-16-0248
  57. Conditional deletion of β1-integrin from the developing lens leads to loss of the lens epithelial phenotype vol.306, pp.2, 2007, https://doi.org/10.1016/j.ydbio.2007.04.004
  58. Retinoids regulate TGFβ signaling at the level of Smad2 phosphorylation and nuclear accumulation vol.1783, pp.12, 2008, https://doi.org/10.1016/j.bbamcr.2008.07.028
  59. Brassinosteroids and plant function: some clues, more puzzles vol.29, pp.3, 2006, https://doi.org/10.1111/j.1365-3040.2005.01481.x
  60. Angiotensin II increases collagen I expression via transforming growth factor-beta1 and extracellular signal-regulated kinase in cardiac fibroblasts vol.606, pp.1-3, 2009, https://doi.org/10.1016/j.ejphar.2008.12.049
  61. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy 2011, https://doi.org/10.1016/j.cytogfr.2011.06.002
  62. Transforming growth factor-β1 SMAD effectors and medial cell number in ascending aorta diseases vol.25, pp.3, 2016, https://doi.org/10.1016/j.carpath.2016.02.003
  63. Methylation of Smad6 by protein arginineN-methyltransferase 1 vol.580, pp.28-29, 2006, https://doi.org/10.1016/j.febslet.2006.11.008