DOI QR코드

DOI QR Code

Cloning and Characterization of a Rice cDNA Encoding Glutamate Decarboxylase

  • Oh, Suk-Heung (Department of Biotechnology, Woosuk University) ;
  • Choi, Won-Gyu (Department of Biotechnology, Woosuk University) ;
  • Lee, In-Tae (Department of Biotechnology, Woosuk University) ;
  • Yun, Song-Joong (Division of Biological Resources Science, Chonbuk National University)
  • Published : 2005.09.30

Abstract

In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected to phosphorus deprivation. Nucleotide sequence analysis indicated that the RicGAD clone was 1,712 bp long, and harbors a complete open reading frame of 505 amino acids. The 505 amino acid sequence deduced from this RicGAD clone exhibited 67.7% and 61.9% identity with OsGAD1 (AB056060) and OsGAD2 (AB056061) in the database, respectively. The 505 amino acid sequence also exhibited 62.9, 64.1, and 64.2% identity to Arabidopsis GAD (U9937), Nicotiana tabacum GAD (AF020425), and Petunia hybrida GAD (L16797), respectively. The RicGAD was found to possess a highly conserved tryptophan residue, but lacks the lysine cluster at the C-proximal position, as well as other stretches of positively charged residues. The GAD sequence was expressed heterologously using the high copy number plasmid, pVUCH. Our activation analysis revealed that the maximal activation of the RicGAD occurred in the presence of both $Ca^{2+}$ and calmodulin. The GAD-encoded 56~58 kDa protein was identified via Western blot analysis, using an anti-GAD monoclonal antibody. The results of our RT-PCR analyses revealed that RicGAD is expressed predominantly in rice roots obtained from rice seedlings grown under phosphorus deprivation conditions, and in non-germinated brown rice, which is known to have a limited phosphorus bioavailability. These results indicate that RicGAD is a $Ca^{2+}$/calmodulin-dependent enzyme, and that RicGAD is expressed primarily under phosphate deprivation conditions.

Keywords

References

  1. Ahn, J., Chung, K. S., Kim, D. U., Won, M., Kim, L., Kim, K. S., Nam, M., Choi, S. J., Kim, H. C., Yoon, M., Chae, S. K. and Hoe, K. L. (2004) Systematic identification of hepatocellular proteins interacting with NS5A of the hepatitis virus. J. Biochem. Mol. Biol. 37, 741-748 https://doi.org/10.5483/BMBRep.2004.37.6.741
  2. Akama, K., Akihiro, T., Kitagawa, M. and Takaiwa, F. (2001) Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim. Biophys. Acta 1522, 143-150 https://doi.org/10.1016/S0167-4781(01)00324-4
  3. Arazi, T., Baum, G., Snedden, W. A., Shelp, B. J. and Fromm, H. (1995) Molecular and biochemical analysis of calmodulin: Interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 108, 551-561 https://doi.org/10.1104/pp.108.2.551
  4. Bandyopadhyay, J., Lee, J. and Bandyopadhyay, A. (2004) Regulation of calcineurin, a calcium/calmodulin-dependent protein phosphatase, in C. elegans. Mol. Cells 18, 10-16
  5. Bartnick, M. and Szafranska, J. (1987) Change in phytate content and phytase during the germination of some cereals. J. Cereal Sci. 5, 23-28 https://doi.org/10.1016/S0733-5210(87)80005-X
  6. Baum, G., Chen, Y., Arazi, T., Takatsuji, H. and Fromm, H. (1993) A plant glutamate decarboxylase containing a calmodulin binding domain: cloning, sequence, and functional analysis. J. Biol. Chem. 268, 19610-19617
  7. Baum, G., Lev-Yadun, S., Fridmann, Y., Arazi, T., Katsnelson, H., Zik, M. and Fromm, H. (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J. 15, 2988-2996
  8. Bouche, N. and Fromm, H. (2004) GABA in plants: just a metabolite? Trends Plant Sci. 9, 110-115 https://doi.org/10.1016/j.tplants.2004.01.006
  9. Chen, Y., Baum, G. and Fromm, H. (1994) The 58-kilodalton calmodulin-binding glutamate decarboxylase is an ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol. 106, 1381-1387
  10. Erlander, M. J. and Tobin, A. J. (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16, 215-226 https://doi.org/10.1007/BF00966084
  11. Gopalakrishna, R. and Anderson, W. B. (1982) Calcium induced hydrophobic site on calmodulin, application for purification of calmodulin by phenyl-Sepharose chromatography. Biochem. Biophys. Res. Commun. 104, 830-836 https://doi.org/10.1016/0006-291X(82)90712-4
  12. Inatomi, K. and Slaughter, J. C. (1971) The role of glutamate decarboxylase and $\gamma$-aminobutyric acid in germinating barley. J. Exp. Bot. 22, 561-571 https://doi.org/10.1093/jxb/22.3.561
  13. Kim, Y. H., Gwon, M. N., Yang, S. Y., Park, T. K., Kim, C. G., Kim, C. W. and Song, M. D. (2002) Isolation of phytaseproducing Pseudomonas sp. and optimization of its phytase production. J. Microbial. Biotechnol. 12, 279-285
  14. Knight, M. R., Campbell, A. K., Smith, S. M. and Trewavas, A. J. (1991) Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524-526 https://doi.org/10.1038/352524a0
  15. Kyte, J. and Doolittle, R. F. (1982) Amino acid scale: Hydropathicity. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  16. Laboure, A. M., Gangnon, J. and Lescure, A. M. (1993) Purification and characterization of a phytase (myo-inositolhexakisphosphate phospho-hydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochem. J. 295, 413-419
  17. Lee, S. H., Seo, H. Y., Kim, J. C., Lee, M. S., Heo, W. D., Chung, W. S., Lee, K. J., Kim, M. C., Cheong, Y. H., Choi, J. Y. and Cho, M. J. (1997) Differential activation of NAD kinase by plant calmodulin isoforms: The critical role of domain I. J. Biol. Chem. 272, 9252-9259 https://doi.org/10.1074/jbc.272.14.9252
  18. Lee, S. H., Kim, C. Y., Lim, C. O., Lee, S. I., Gal, S. W. and Choi, Y. J. (2000) Molecular characterization of three cDNA clones encoding calmodulin isoforms of rice. Agric. Chem. Biotechnol. 43, 5-11
  19. Lee, E. Y., Yoon, H. Y., Kim, T. U., Choi, S. Y., Won, M. H. and Cho, S. W. (2001) Inactivation of brain glutamate dehydrogenase isoproteins by MDL 29951. J. Biochem. Mol. Biol. 34, 268-271
  20. Lim, J. H., Chung, I. M., Ryu, S. S., Park, M. R. and Yun, S. J. (2003) Differential responses of rice acid phosphatase activities and isoforms to phosphorus deprivations. J. Biochem. Mol. Biol. 36, 597-602 https://doi.org/10.5483/BMBRep.2003.36.6.597
  21. Lukas, T. J., Craig, T. A., Roberts, D. M., Watterson, D. M., Haiech, J. and Prendergast, F. G. (1987) Calcium-binding proteins; in Health and Disease, Carafoli, E., Imesin, G., Means, A. R., Norman, A. W., Siegel, F. L., Suttie, J. W. and Vanaman, T. C. (eds.), pp. 533-543, Academic Press, New York, USA
  22. Mody, I., Dekoninck, Y., Otis, T. S. and Soltesz, I. (1994) Bringing the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517-525 https://doi.org/10.1016/0166-2236(94)90155-4
  23. Novak, W. K. and Haslberger, A. G. (2000) Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem. Toxicol. 38, 473-483 https://doi.org/10.1016/S0278-6915(00)00040-5
  24. Oh, S. H. and Yun, S. J. (1999) Effects of various calmodulins on the activation of glutamate decarboxylase and nicotinamide adenine dinucleotide kinase isolated from tobacco plants. Agric. Chem. Biotechnol. 42, 19-24
  25. Oh, S. H., Choi, W. G. and Choi, D. S. (2001) Cloning and nucleotide sequencing of a partial glutamate decarboxylase gene from Arabidopsis thaliana cDNA library. Kor. J. Biotechnol. Bioeng. 16, 36-40
  26. Oh, S. H. (2003) Stimulation of $\gamma$-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J. Biochem. Mol. Biol. 36, 319-325 https://doi.org/10.5483/BMBRep.2003.36.3.319
  27. Oh, S. H. (2003) Stimulation of $\gamma$-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J. Biochem. Mol. Biol. 36, 319-325 https://doi.org/10.5483/BMBRep.2003.36.3.319
  28. Roberts, D. M. and Harmon, A. C. (1992) Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 375-414 https://doi.org/10.1146/annurev.pp.43.060192.002111
  29. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467
  30. Seshu, D. V. and Dadlani, M. (1991) Mechanism of seed dormancy in rice. Seed Sci. Res. 1, 187-194 https://doi.org/10.1017/S0960258500000854
  31. Shelp, B. J., Bown, A. W. and McLean, M. D. (1999) Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Sci. 4, 446-452 https://doi.org/10.1016/S1360-1385(99)01486-7
  32. Snedden, W. A., Arazi, T., Fromm, H. and Shelp, B. J. (1995) Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol. 108, 543-549
  33. Snedden, W. A., Koutsia, N., Baum, G. and Fromm, H. (1996) Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J. Biol. Chem. 271, 4148-4153 https://doi.org/10.1074/jbc.271.8.4148
  34. Stayanarayan, V. and Nair, P. M. (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29, 367-375 https://doi.org/10.1016/0031-9422(90)85081-P
  35. Ueno, H. (2000) Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catalysis B: Enzymatic 10, 67-79 https://doi.org/10.1016/S1381-1177(00)00114-4
  36. Vandewalle, I. and Olsson (1983) The $\gamma$-aminobutyric acid shunt in germinating Sinapis alba seeds. Plant Sci. Lett. 31, 269-273 https://doi.org/10.1016/0304-4211(83)90065-2
  37. Yun, S. J. and Oh, S. H. (1998) Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Mol. Cells 8, 125-129
  38. Yun, S. J. and Kaeppler, S. M. (2001) Induction of maize acid phosphatase activity under phosphorus starvation. Plant Soil 237, 109-115 https://doi.org/10.1023/A:1013329430212

Cited by

  1. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency vol.174, pp.1, 2011, https://doi.org/10.1002/jpln.201000085
  2. Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit vol.41, pp.9, 2014, https://doi.org/10.1007/s11033-014-3506-x
  3. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2133-9
  4. Purification, properties and cDNA cloning of glutamate decarboxylase in germinated faba bean (Vicia faba L.) vol.138, pp.2-3, 2013, https://doi.org/10.1016/j.foodchem.2012.11.050
  5. Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean vol.49, 2013, https://doi.org/10.1016/j.indcrop.2013.06.046
  6. The language of calcium in postharvest life of fruits, vegetables and flowers vol.144, 2012, https://doi.org/10.1016/j.scienta.2012.07.007
  7. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock vol.125, 2016, https://doi.org/10.1016/j.envexpbot.2016.01.009
  8. Abiotic stress responses in plants: roles of calmodulin-regulated proteins vol.6, 2015, https://doi.org/10.3389/fpls.2015.00809
  9. A Common Structural Basis for pH- and Calmodulin-mediated Regulation in Plant Glutamate Decarboxylase vol.392, pp.2, 2009, https://doi.org/10.1016/j.jmb.2009.06.080
  10. Functional foods and the biomedicalisation of everyday life: a case of germinated brown rice vol.35, pp.6, 2013, https://doi.org/10.1111/j.1467-9566.2012.01533.x
  11. Characterization of Glutamate Decarboxylase from a High γ-Aminobutyric Acid (GABA)-Producer,Lactobacillus paracasei vol.72, pp.2, 2008, https://doi.org/10.1271/bbb.70163
  12. γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes vol.57, pp.2, 2010, https://doi.org/10.1016/j.postharvbio.2010.03.007
  13. Cloning and Characterization of a Maize cDNA Encoding Glutamate Decarboxylase vol.28, pp.4, 2010, https://doi.org/10.1007/s11105-010-0191-3
  14. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin vol.1764, pp.5, 2006, https://doi.org/10.1016/j.bbapap.2006.02.007
  15. Effects of the inhibitor of glutamate decarboxylase on the development and GABA accumulation in germinating fava beans under hypoxia-NaCl stress vol.8, pp.36, 2018, https://doi.org/10.1039/C8RA03940B