DOI QR코드

DOI QR Code

The Gene Encoding γ-Glutamyl Transpeptidase II in the Fission Yeast Is Regulated by Oxidative and Metabolic Stress

  • Kang, Hyun-Jung (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Byung-Chul (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Women's University) ;
  • Ahn, Ki-Sup (Department of Health and Environment, Baekseok College) ;
  • Lim, Chang-Jin (Division of Life Sciences, College of Natural Sciences, Kangwon National University)
  • Published : 2005.09.30

Abstract

$\gamma$-Glutamyl transpeptidase (GGT, EC 2.3.2.2.) catalyzes the transfer of the $\gamma$-glutamyl moiety from $\gamma$-glutamyl containing ompounds, notably glutathione (GSH), to acceptor amino acids and peptides. A second gene (GGTII) encoding GGT was previously isolated and characterized from the fission yeast Schizosaccharomyces pombe. In the present work, the GGTII-lacZ fusion gene was constructed and used to study the transcriptional regulation of the S. pombe GGTII gene. The synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene was significantly enhanced by NO-generating SNP and hydrogen peroxide in the wild type yeast cells. The GGTII mRNA level was increased in the wild-type S. pombe cells treated with SNP. However, the induction by SNP was abolished in the Pap1-negative S. pombe cells, implying that the induction by SNP of GGTII is mediated by Pap1. Fermentable carbon sources, such as glucose (at low concentrations), lactose and sucrose, as a sole carbon source, enhanced the synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene in wild type KP1 cells but not in Pap1-negative cells. Glycerol, a non-fermentable carbon source, was also able to induce the synthesis of $\beta$-galactosidase from the fusion gene, but other non-fermentable carbon sources such as acetate and ethanol were not. Transcriptional induction of the GGTII gene by fermentable carbon sources was also confirmed by increased GGTII mRNA levels in the yeast cells grown with them. Nitrogen starvation was also able to induce the synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene in a Pap1-dependent manner. On the basis of the results, it is concluded that the S. pombe GGTII gene is regulated by oxidative and metabolic stress.

Keywords

References

  1. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Busiello, I., Acquaviva, R., Di Popolo, A., Blanchard, T. G., Ricci, V., Romano, M. and Zarrilli, R. (2004) Helicobacter pylori $\gamma$-glutamyltranspeptidase upregulates COX-2 and EGF-related peptide expression in human gastric cells. Cell. Microbiol. 6, 255-267 https://doi.org/10.1046/j.1462-5822.2004.00366.x
  3. Degols, G. and Russell, P. (1997) Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol. Cell. Biol. 17, 3356-3363
  4. Fujii, Y., Shimizu, T., Toda, T., Yanagida, M. and Hakoshima, T. (2000) Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat. Struct. Biol. 7, 889-893 https://doi.org/10.1038/82822
  5. Gong, M. and Ho, B. (2004) Prominent role of $\gamma$-glutamyl transpeptidase on the growth of Helicobacter pylori. World J. Gastroenterol. 10, 2994-2996
  6. Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181-191 https://doi.org/10.1016/0076-6879(83)01013-7
  7. Gunasekaran, S., Imbayagwo, M., McDonald, L., Gunasekaran, M. and Manavathu, E. (1995) Influence of carbon and nitrogen sources on glutathione catabolic enzymes in Candida albicans during dimorphism. Mycopathol. 131, 92-97 https://doi.org/10.1007/BF01102885
  8. Gupta, S., Campbell, D., Derijard, B. and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393 https://doi.org/10.1126/science.7824938
  9. Hiesinger, M., Roth, S., Meissner, E. and Schüller, H.-J. (2001) Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements. Curr. Genet. 39, 68-76 https://doi.org/10.1007/s002940000182
  10. Karp, D. R., Shimooku, K. and Lipsky, P. E. (2001) Expression of $\gamma$-glutamyl transpeptidase protects Ramos B cells from oxidation-induced cell death. J. Biol. Chem. 276, 3798-3804 https://doi.org/10.1074/jbc.M008484200
  11. Kato, T., Okazaki, K., Murakami, H., Stettler, S., Fantes, P. and Okayama, H. (1996) Stress signal, mediated by a Hogl-like MAP kinase, controls sexual development in fission yeast. FEBS Lett. 378, 207-212. https://doi.org/10.1016/0014-5793(95)01442-X
  12. Kim, H. G., Park, H. J., Kang, H. J., Lim, H. W., Kim, K., Park, E. H., Ahn, K. and Lim, C. J. (2005) The Schizosaccharomyces pombe gene encoding $\gamma$-glutamyl transpeptidase I is regulated by non-fermentable carbon sources and nitrogen starvation. J. Microbiol. 43, 44-48
  13. Kim, M., Lim, C. J. and Kim, D. (2002) Transcription of Schizosaccharomyces pombe thioltransferase-1 in response to stress conditions. J. Biochem. Mol. Biol. 35, 409-413 https://doi.org/10.5483/BMBRep.2002.35.4.409
  14. Kim, S. J., Shin, Y. H., Kim, K., Park, E. H., Sa, J. H. and Lim, C. J. (2003) Regulation of the gene encoding glutathione synthetase from the fission yeast. J. Biochem. Mol. Biol. 36, 326-331 https://doi.org/10.5483/BMBRep.2003.36.3.326
  15. Kimura, K., Tran, L. S., Uchida, I. and Itoh, Y. (2004) Characterization of Bacillus subtilis $\gamma$-glutamyltranspeptidase and its involvement in the degradation of capsule poly-gammaglutamate. Microbiol. 150, 4115-4123 https://doi.org/10.1099/mic.0.27467-0
  16. Lee, J. E., Park, M. H. and Park, J. H. (2004) The gene expression profile of cyst epithelial cells in autosomal dominant polycystic kidney disease patients. J. Biochem. Mol. Biol. 37, 612-617 https://doi.org/10.5483/BMBRep.2004.37.5.612
  17. Lee, Y.-Y., Kim, S.-J., Park, E.-H. and Lim, C.-J. (2003) Glutathione content and the activities of glutathione synthesizing enzymes in fission yeast are modulated by oxidative stress. J. Microbiol. 41, 248-251
  18. Lee, Y. J., Galoforo, S. S., Berns, C. M., Chen, J. C., Davis, B. H., Sim, J. E., Corry, P. M. and Spitz, D. R. (1998) Glucose deprivation-induced cytotoxicity and alterations in mitogenactivated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J. Biol. Chem. 273, 5294-5299 https://doi.org/10.1074/jbc.273.9.5294
  19. Liu, X. D. and Thiele, D. J. (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. Methods Enzymol. 11, 289-299 https://doi.org/10.1006/meth.1996.0423
  20. Livingstone, C., Patel, G. and Jones, N. (1995) ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 14, 1785-1797
  21. Madrid, M., Soto, T., Franco, A., Paredes, V., Hidalgo, E., Gracto, M. and Cansado, J. (2004) A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J. Biol. Chem. 279, 41594-41602 https://doi.org/10.1074/jbc.M405509200
  22. Manavathu, M., Gunasekaran, S., Porte, Q., Manavathu, E. and Gunasekaran, M. (1996) Changes in glutathione metabolic enzyme during yeast-to-mycelium conversion of Candida albicans. Can. J. Microbiol. 42, 76-79 https://doi.org/10.1139/m96-011
  23. Marshall, H. F., Merchant, K. and Stamler, J. S. (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14, 1889-1900 https://doi.org/10.1096/fj.00.011rev
  24. Mehdi, K. and Penninckx, M. J. (1997) An important role for glutathione and $\gamma$-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiol. 143, 1885-1889 https://doi.org/10.1099/00221287-143-6-1885
  25. Mehdi, K., Thierie, J. and Penninckx, M. J. (2001) $\gamma$-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuola transport and metabolism of glutathione. Biochem. J. 359, 631-637 https://doi.org/10.1042/0264-6021:3590631
  26. Millar, J., Buck, V. and Wilkinson, M. (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9, 2117-2130 https://doi.org/10.1101/gad.9.17.2117
  27. Minami, H., Suzuki, H. and Kumagai, H. (2004) $\gamma$-Glutamyltranspeptidase, but not YwrD, is important in utilization of extracellular glutathione as a sulfur source in Bacillus subtilis. J. Bacteriol. 186, 1213-1214 https://doi.org/10.1128/JB.186.4.1213-1214.2004
  28. Nathan, C. and Shiloh, M. U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841-8848
  29. Nguyen, A. N., Lee, A., Place, W. and Shiozaki, K. (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11, 1169-1181 https://doi.org/10.1091/mbc.11.4.1169
  30. Niida, S., Kawahara, M., Ishizuka, Y., Ikeda, Y., Kondo, T., Hibi, T., Suzuki, Y., Ikeda, K. and Taniguchi, N. (2004) $\gamma$-Glutamyltranspeptidase stimulates receptor activator of nuclear factor-kappaB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J. Biol. Chem. 279, 5752-5756 https://doi.org/10.1074/jbc.M311905200
  31. Park, H.-J., Moon, J.-S., Kim, H.-G., Kim, I.-H., Kim, K., Park, E.-H. and Lim, C.-J. (2005) Characterization of a second gene encoding $\gamma$-glutamyl transpeptidase from Schizosaaccharomyces pombe. Can. J. Microbiol. 51, 269-275 https://doi.org/10.1139/w04-137
  32. Park, H. J., Lim, H. W., Kim, K., Kim, I. H., Park, E. H. and Lim, C. J. (2004) Characterization and regulation of the $\gamma$-glutamyl transpeptidase gene from the fission yeast Schizosaccharomyces pombe. Can J. Microbiol. 50, 61-66 https://doi.org/10.1139/w03-106
  33. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B. and Davis, R. J. (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen- activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247-1255
  34. Rolland, F., Winderickx, J. and Thevelein, J. M. (2001) Glucosesensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26, 310-317 https://doi.org/10.1016/S0968-0004(01)01805-9
  35. Shiozaki, K. and Russell, P. (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739-743 https://doi.org/10.1038/378739a0
  36. Shiozaki, K., Shiozaki, M. and Russell, P. (1997) Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol. Biol. Cell 8, 409-419 https://doi.org/10.1091/mbc.8.3.409
  37. Song, J. J., Rhee, J. G., Suntharalingam, M., Walsh, S. A., Spitz, D. R. and Lee, Y. J. (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by $H_2O_2$. J. Biol. Chem. 277, 46566-46575 https://doi.org/10.1074/jbc.M206826200
  38. Spitz, D. R., Sim, J. E., Ridnour, L. A., Galoforo, S. S. and Lee, Y. J. (2000) Glucose deprivation-induced oxidative stress in human tumor cells: A fundamental defect in metabolism? Ann. N. Y. Acad. Sci. 899, 349-362 https://doi.org/10.1111/j.1749-6632.2000.tb06199.x
  39. Springael, J.-Y. and Penninckx, M. J. (2003) Nitrogen-source regulation of yeast $\gamma$-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factor Gln3, Nil1/Gat1 and Gzf3. Biochem. J. 371, 589-595 https://doi.org/10.1042/BJ20021893
  40. Stettler, S., Warbrick, E., Prochnik, S., Mackie, S. and Fantes, P. (1996) The wis1 signal transduction pathway is required for expression of cAMP-repressed genes in fission yeast. J. Cell Sci. 109, 1927-1935
  41. Takahashi, H. and Watanabe, H. (2004) Post-translational processing of Neisseria meningitidis $\gamma$-glutamyl transpeptidase and its association with inner membrane facing to the cytoplasmic space. FEMS Microbiol. Lett. 234, 27-35
  42. Takahashi, H., Hirose, K. and Watanabe, H. (2004a) Necessity of meningococcal $\gamma$-glutamyl transpeptidase for Neisseria meningitidis growth in rat cerebrospinal fluid (CSF) and CSF-like medium. J. Bacteriol. 186, 244-247 https://doi.org/10.1128/JB.186.1.244-247.2004
  43. Takahashi, H., Kuroki, T., Watanabe, Y., Dejsirilert, S., Saengsuk, L., Yamai, S. and Watanabe, H. (2004b) Reliability of the detection of meningococcal $\gamma$ -glutamyl transpeptidase as an identification marker for Neisseria meningitidis. Microbiol. Immunol. 48, 485-487 https://doi.org/10.1111/j.1348-0421.2004.tb03540.x
  44. Toda, T., Shimanuki, M. and Yanagida, M. (1991) Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5, 60-73 https://doi.org/10.1101/gad.5.1.60
  45. Toone, W. M., Kuge, S., Samuels, M., Morgan, B. A., Toda, T. and Jones, N. (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stressactivated MAP kinase Sty1/Spc1. Genes Dev. 12, 23042-23049 https://doi.org/10.1101/gad.12.10.1453
  46. Van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P. and Angel, P. (1995) ATF-2 is preferentially activated by stressactivated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14, 1798-1811
  47. Vincent, O. and Carlson, M. (1998) Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J. 17, 7002-7008 https://doi.org/10.1093/emboj/17.23.7002
  48. Walther, K. and Schuller, H. J. (2001) Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiol. 147, 2037-2044
  49. Zhang, H., Dickinson, D. A., Liu, R. M. and Forman, H. J. (2005) 4-Hydroxynonenal increases $\gamma$-glutamyl transpeptidase gene expression through mitogen-activated protein kinase pathways. Free Radic. Biol. Med. 38, 463-471 https://doi.org/10.1016/j.freeradbiomed.2004.10.031

Cited by

  1. Clades of γ-glutamyltransferases (GGTs) in the ascomycota and heterologous expression of Colletotrichum graminicola CgGGT1, a member of the pezizomycotina-only GGT clade vol.51, pp.1, 2013, https://doi.org/10.1007/s12275-013-2434-0
  2. γ-Glutamyl transpeptidase (GgtA) of Aspergillus nidulans is not necessary for bulk degradation of glutathione vol.197, pp.2, 2015, https://doi.org/10.1007/s00203-014-1057-0
  3. Nitrogen depletion causes up-regulation of glutathione content and γ-glutamyltranspeptidase in Schizosaccharomyces pombe vol.46, pp.1, 2008, https://doi.org/10.1007/s12275-007-0244-y
  4. γ-Glutamyltransferases (GGT) in Colletotrichum graminicola: mRNA and enzyme activity, and evidence that CgGGT1 allows glutathione utilization during nitrogen deficiency vol.51, 2013, https://doi.org/10.1016/j.fgb.2012.11.007