DOI QR코드

DOI QR Code

Functional Identification of an 8-Oxoguanine Specific Endonuclease from Thermotoga maritima

  • Im, Eun-Kyoung (Yonsei Research Institute of Aging Science, Yonsei University) ;
  • Hong, Chang-Hyung (Yonsei Research Institute of Aging Science, Yonsei University) ;
  • Back, Jung-Ho (Department of Advanced Fusion Technology, Konkuk University) ;
  • Han, Ye-Sun (Department of Advanced Fusion Technology, Konkuk University) ;
  • Chung, Ji-Hyung (Yonsei Research Institute of Aging Science, Yonsei University)
  • Published : 2005.11.30

Abstract

To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of $NaBH_4$, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.

Keywords

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Bentley, D. R. (2000) The human genome project-an overview. Med. Res. Rev. 20, 189-196 https://doi.org/10.1002/(SICI)1098-1128(200005)20:3<189::AID-MED2>3.0.CO;2-#
  3. Boiteux, S., O'Connor, T. R., Lederer, F., Gouyette, A. and Laval, J. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916-3922
  4. Bork, P. (1992) Mobile modules and motifs. Curr. Opin. Struct. Biol. 2, 413-421 https://doi.org/10.1016/0959-440X(92)90233-W
  5. Bork, P. and Gibson, T. J. (1996) Applying motif and profile searches. Methods Enzymol. 266, 162-184 https://doi.org/10.1016/S0076-6879(96)66013-3
  6. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Brock, P. and Bairoch, A. (1996) Go hunting in sequence databases but watch out for traps. Trends Genet. 12, 425-427 https://doi.org/10.1016/0168-9525(96)60040-7
  8. Dizdaroglu, M. (2003) Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutat. Res. 531, 109-126 https://doi.org/10.1016/j.mrfmmm.2003.07.003
  9. Doherty, A. J., Serpell, L. C. and Ponting, C. P. (1996) The helixhairpin- helix DNA-binding motif: a structural basis for nonsequence- specific recognition of DNA. Nucleic Acids Res. 24, 2488-2497 https://doi.org/10.1093/nar/24.13.2488
  10. Feng, J. A., Crasto, C. J. and Matsumoto, Y. (1998) Deoxyribose phosphate excision by the N-terminal domain of the polymerase beta: the mechanism revisited. Biochemistry 37, 9605-9611 https://doi.org/10.1021/bi9808619
  11. Fortini, P., Pascucci, B., Parlanti, E., D'Errico, M., Simonelli, V. and Dogliotti, E. (2003) 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat. Res. 531, 127- 139 https://doi.org/10.1016/j.mrfmmm.2003.07.004
  12. Fraser, C. M., Eisen, J. A. and Salzberg, S. L. (2000) Microbial genome sequencing. Nature 406, 799-803 https://doi.org/10.1038/35021244
  13. Futterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., Dock, C., Antranikian, G. and Liebl, W. (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101, 9091-9096
  14. Gogos, A. and Clarke, N. D. (1999) Characterization of an 8- oxoguanine DNA glycosylase from Methanococcus jannaschii. J. Biol. Chem. 274, 30447-30450 https://doi.org/10.1074/jbc.274.43.30447
  15. Hazra, T. K., Izumi, T., Maidt, L., Floyd, R. A. and Mitra, S. (1998) The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Res. 26, 5116-5122 https://doi.org/10.1093/nar/26.22.5116
  16. Heringa, J. (1999) Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23, 341-364 https://doi.org/10.1016/S0097-8485(99)00012-1
  17. Krokan, H. E., Standal, R. and Slupphaug, G. (1997) DNA glycosylase in the base excision repair of DNA. Biochem. J. 325, 1-16
  18. Lee, S. H. (2001) Recognition of DNA damage in mammals. J. Biochem. Mol. Biol. 34, 489-495
  19. Michaels, M. L., Pham, L., Cruz, C. and Miller, J. H. (1991) MutM, a protein that prevents G . C$\rightarrow$T . A transversions, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Res. 19, 3629-3632 https://doi.org/10.1093/nar/19.13.3629
  20. Mullen, G. P. and Wilson, S. H. (1997) DNA polymerase b in abasic site repair: A structurally conserved helix-hairpin-helix motif in lesion detection by base excision repair enzymes. Biochemistry 36, 4713-4717 https://doi.org/10.1021/bi962363a
  21. Nash, H. M., Bruner, S. D., Scharer, O. D., Kawate, T., Addona, T. A., Spooner, E., Lane, W. S. and Verdine, G. L. (1996) Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968-980 https://doi.org/10.1016/S0960-9822(02)00641-3
  22. Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., Eisen, J. A., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C. and Fraser, C. M. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323-329 https://doi.org/10.1038/20601
  23. Petit, C. and Sancar, A. (1999) Nucleotide excision repair: from E. coli to man. Biochimie 81, 15-25 https://doi.org/10.1016/S0300-9084(99)80034-0
  24. Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S. and Boiteux, S. (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 8010-8015
  25. Rosenquist, T. A., Zharkov, A. P. and Grollman, A. P. (1997) Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94, 7429-7434
  26. Sekiguchi, M. and Tsuzuki, T. (2002) Oxidative nucleotide damage: consequences and prevention. Oncogene 21, 8895-8904 https://doi.org/10.1038/sj.onc.1206023
  27. Sidorkina, O. M. and Laval, J. (2000) Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein. J. Biol. Chem. 275, 9924-9929 https://doi.org/10.1074/jbc.275.14.9924
  28. Sterky, F. and Lundeberg, J. (2000) Sequence analysis of genes and genomes. J. Biotechnol. 76, 1-31 https://doi.org/10.1016/S0168-1656(99)00176-5
  29. Tudek, B. (2003) Imidazole ring-opened DNA purines and their biological significance. J. Biochem. Mol. Biol. 36, 12-19 https://doi.org/10.5483/BMBRep.2003.36.1.012
  30. Zharkov, D. O., Rieger, R. A., Iden, C. R. and Grollman, A. P. (1997) NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. J. Biol. Chem. 272, 5335-5341 https://doi.org/10.1074/jbc.272.8.5335

Cited by

  1. Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine vol.387, pp.3, 2009, https://doi.org/10.1016/j.jmb.2009.01.067
  2. Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction vol.17, pp.5, 2009, https://doi.org/10.1016/j.str.2009.03.007
  3. Recent advances in the structural mechanisms of DNA glycosylases vol.1834, pp.1, 2013, https://doi.org/10.1016/j.bbapap.2012.10.005
  4. The C-terminal Lysine of Ogg2 DNA Glycosylases is a Major Molecular Determinant for Guanine/8-Oxoguanine Distinction vol.397, pp.1, 2010, https://doi.org/10.1016/j.jmb.2010.01.024