DOI QR코드

DOI QR Code

Protein Folding and Diseases

  • Lee, Cheol-Ju (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology)
  • Published : 2005.05.31

Abstract

For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.

Keywords

References

  1. Baram, D. and Yonath, A. (2005) From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett. 579, 948-954 https://doi.org/10.1016/j.febslet.2004.11.063
  2. Barouch, W., Prasad, K., Greene, L. and Eisenberg, E. (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36, 4303-4308 https://doi.org/10.1021/bi962727z
  3. Barral, J. M., Broadley, S. A., Schaffar, G. and Hartl, F. U. (2004) Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17-29 https://doi.org/10.1016/j.semcdb.2003.12.010
  4. Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S. A. (2004) Molecular pathways to neurodegeneration. Nat. Med. 10 (suppl), S2-S9 https://doi.org/10.1038/nm1067
  5. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. and Sigler, P. B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578-586 https://doi.org/10.1038/371578a0
  6. Bu, G. and Schwartz, A. L. (1998) RAP, a novel type of ER chaperone. Trends Cell Biol. 8, 272-276 https://doi.org/10.1016/S0962-8924(98)01283-5
  7. Bukau, B. and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366 https://doi.org/10.1016/S0092-8674(00)80928-9
  8. Caughey, B. and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267-298 https://doi.org/10.1146/annurev.neuro.26.010302.081142
  9. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. and Dobson, C. M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424, 805-808 https://doi.org/10.1038/nature01891
  10. Dill, K. A. and Chan, H. S. (1997) From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10-19 https://doi.org/10.1038/nsb0197-10
  11. Dobson, C. M. (2003) Protein folding and misfolding. Nature 426, 884-890 https://doi.org/10.1038/nature02261
  12. Dobson, C. M. (2004) Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3-16 https://doi.org/10.1016/j.semcdb.2003.12.008
  13. Ellgaard, L. and Frickel, E. M. (2003) Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem. Biophys. 39, 223-247 https://doi.org/10.1385/CBB:39:3:223
  14. Ellis, R. J. (2001a) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114-119 https://doi.org/10.1016/S0959-440X(00)00172-X
  15. Ellis, R. J. (2001b) Molecular chaperones: inside and outside the Anfinsen cage. Curr. Biol. 11, R1038-1040 https://doi.org/10.1016/S0960-9822(01)00620-0
  16. Fersht, A. R. (1999) Folding pathways and energy landscapes; in Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding, Julet, M. R. and Hadler, G. L. (eds.), pp. 573-614, W H Freeman and Co., New York, USA
  17. Fersht, A. R. and Daggett, V. (2002) Protein folding and unfolding at atomic resolution. Cell 108, 573-582 https://doi.org/10.1016/S0092-8674(02)00620-7
  18. Flaherty, K. M., McKay, D. B., Kabsch, W. and Holmes, K. C. (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. USA 88, 5041-5045 https://doi.org/10.1073/pnas.88.11.4971
  19. Freedman, R. B., Bulleid, N. J., Hawkins, H. C. and Paver, J. L. (1989) Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Symp. 55, 167-192
  20. Frydman, J. and Hartl, F. U. (1996) Principles of chaperoneassisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497-1502 https://doi.org/10.1126/science.272.5267.1497
  21. Grantcharova, V., Alm, E. J., Baker, D. and Horwich, A. L. (2001) Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70-82 https://doi.org/10.1016/S0959-440X(00)00176-7
  22. Hardesty, B. and Kramer, G. (2001) Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol. 66, 41-66 https://doi.org/10.1016/S0079-6603(00)66026-9
  23. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858 https://doi.org/10.1126/science.1068408
  24. Jimenez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M. and Saibil, H. R. (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815-821 https://doi.org/10.1093/emboj/18.4.815
  25. Kagan, B. L., Azimov, R. and Azimova, R. (2004) Amyloid peptide channels. J. Membr. Biol. 202, 1-10 https://doi.org/10.1007/s00232-004-0709-4
  26. Karzai, A. W. and McMacken, R. (1996) A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271, 11236- 11246 https://doi.org/10.1074/jbc.271.19.11236
  27. Laufen, T., Mayer, M. P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J. and Bukau, B. (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452-5457 https://doi.org/10.1073/pnas.96.10.5452
  28. Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. and Matouschek, A. (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627-637 https://doi.org/10.1016/S1097-2765(01)00209-X
  29. Lomas, D. A. and Carrell, R. W. (2002) Serpinopathies and the conformational dementias. Nat. Rev. Genet. 3, 759-768 https://doi.org/10.1038/nrg907
  30. Lomas, D. A., Evans, D. L., Finch, J. T. and Carrell, R. W. (1992) The mechanism of Z a1-antitrypsin accumulation in the liver. Nature 357, 605-607 https://doi.org/10.1038/357605a0
  31. Matouschek, A. (2003) Protein unfolding--an important process in vivo? Curr. Opin. Struct. Biol. 13, 98-109 https://doi.org/10.1016/S0959-440X(03)00010-1
  32. Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670-684 https://doi.org/10.1007/s00018-004-4464-6
  33. McParland, V. J., Kalverda, A. P., Homans, S. W. and Radford, S. E. (2002) Structural properties of an amyloid precursor of $\beta_{2}$- microglobulin. Nat. Struct. Biol. 9, 326-331 https://doi.org/10.1038/nsb791
  34. Meunier, L., Usherwood, Y. K., Chung, K. T. and Hendershot, L. M. (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456-4469 https://doi.org/10.1091/mbc.E02-05-0311
  35. Munro, S. and Pelham, H. R. (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291-300 https://doi.org/10.1016/0092-8674(86)90746-4
  36. Nagata, K. (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem. Sci. 21, 22-26
  37. Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F. and Tycko, R. (2002) A structural model for Alzheimer's $\beta$-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99, 16742-16747 https://doi.org/10.1073/pnas.262663499
  38. Pilon, M., Schekman, R. and Romisch, K. (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540-4548 https://doi.org/10.1093/emboj/16.15.4540
  39. Plemper, R. K. and Wolf, D. H. (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266-270 https://doi.org/10.1016/S0968-0004(99)01420-6
  40. Prusiner, S. B., Scott, M. R., DeArmond, S. J. and Cohen, F. E. (1998) Prion protein biology. Cell 93, 337-348 https://doi.org/10.1016/S0092-8674(00)81163-0
  41. Rudiger, S., Germeroth, L., Schneider-Mergener, J. and Bukau, B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501-1507 https://doi.org/10.1093/emboj/16.7.1501
  42. Sakahira, H., Breuer, P., Hayer-Hartl, M. K. and Hartl, F. U. (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99, 16412-16418 https://doi.org/10.1073/pnas.182426899
  43. Selkoe, D. J. (2003) Folding proteins in fatal ways. Nature 426, 900-904 https://doi.org/10.1038/nature02264
  44. Siegers, K., Bolter, B., Schwarz, J. P., Bottcher, U. M., Guha, S. and Hartl, F. U. (2003) TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J. 22, 5230-5240 https://doi.org/10.1093/emboj/cdg483
  45. Sitia, R. and Braakman, I. (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426, 891-894 https://doi.org/10.1038/nature02262
  46. Staniforth, R. A., Giannini, S., Higgins, L. D., Conroy, M. J., Hounslow, A. M., Jerala, R., Craven, C. J. and Waltho, J. P. (2001) Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774-4781 https://doi.org/10.1093/emboj/20.17.4774
  47. Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta 1739, 5-25 https://doi.org/10.1016/j.bbadis.2004.08.004
  48. Sunde, M. and Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 50, 123-159 https://doi.org/10.1016/S0065-3233(08)60320-4
  49. Thulasiraman, V., Yang, C. F. and Frydman, J. (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85-95 https://doi.org/10.1093/emboj/18.1.85
  50. Welch, W. J. (2004) Role of quality control pathways in human diseases involving protein misfolding. Semin. Cell Dev. Biol. 15, 31-38 https://doi.org/10.1016/j.semcdb.2003.12.011
  51. Yu, M. H., Lee, K. N. and Kim, J. (1995) The Z type variation of human a1-antitrypsin causes a protein folding defect. Nat. Struct. Biol. 2, 363-367 https://doi.org/10.1038/nsb0595-363
  52. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. and Hendrickson, W. A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614 https://doi.org/10.1126/science.272.5268.1606

Cited by

  1. Self-Assembly of Fibers and Fibrils vol.45, pp.44, 2006, https://doi.org/10.1002/anie.200602001
  2. Generation and Analysis of Large-Scale Data-DrivenMycobacterium tuberculosisFunctional Networks for Drug Target Identification vol.2011, 2011, https://doi.org/10.1155/2011/801478
  3. Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement vol.409, pp.2, 2011, https://doi.org/10.1016/j.bbrc.2011.04.132
  4. The Role of Protein Conformational Switches in Pharmacology: Its Implications in Metabolic Reprogramming and Protein Evolution vol.68, pp.3, 2014, https://doi.org/10.1007/s12013-013-9748-8
  5. Ubiquitination and cysteine nitrosylation during aging and Alzheimer's disease vol.80, pp.4-5, 2009, https://doi.org/10.1016/j.brainresbull.2009.04.018
  6. Analysis of persistent nonstationary time series and applications vol.7, pp.2, 2012, https://doi.org/10.2140/camcos.2012.7.175
  7. Efficient inefficiency: Biochemical “junk” may represent molecular bridesmaids awaiting emergent function as a buffer against environmental fluctuation vol.67, pp.4, 2006, https://doi.org/10.1016/j.mehy.2006.02.022
  8. Proteomic Analysis of Inclusion Body Myositis vol.65, pp.8, 2006, https://doi.org/10.1097/01.jnen.0000228204.19915.69
  9. An antibody-based affinity chromatography tool to assess Cu, Zn superoxide dismutase (SOD) G93A structural complexity in vivo vol.5, pp.3, 2010, https://doi.org/10.1002/biot.200900106
  10. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease vol.9, 2015, https://doi.org/10.3389/fnins.2015.00059
  11. Profiling the culprit in Alzheimer’s disease (AD): Bacterial toxic proteins – Will they be significant for the aetio-pathogenesis of AD and the transmissible spongiform encephalopathies? vol.69, pp.3, 2007, https://doi.org/10.1016/j.mehy.2007.01.022
  12. Selbstorganisation von Fasern und Fibrillen vol.118, pp.44, 2006, https://doi.org/10.1002/ange.200602001
  13. Chaotic Multiquenching Annealing Applied to the Protein Folding Problem vol.2014, 2014, https://doi.org/10.1155/2014/364352
  14. Inferences from structural comparison: flexibility, secondary structure wobble and sequence alignment optimization vol.13, pp.S15, 2012, https://doi.org/10.1186/1471-2105-13-S15-S12