DOI QR코드

DOI QR Code

Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L.

  • 발행 : 2005.07.31

초록

$Ca^{2+}$/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of $Ca^{2+}$-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the calmodulin genes, OsCam1, OsCam2, and OsCam3 were sequenced. OsCam1 and OsCam2 encode a conventional 148-amino acid calmodulin protein that contains four characteristic $Ca^{2+}$-binding motifs. OsCam3 encode a similar protein with a 38-amino-acid extension containing a putative prenylation site (CVIL) at the carboxyl terminus. RT-PCR showed that each of the genes is expressed in leaves and roots of 2-week old rice seedlings. By RNA gel blot analysis, OsCam1 mRNA levels strongly increased in response to NaCl, mannitol and wounding treatments. In contrast, OsCam2 mRNA levels were relatively unchanged under all conditions investigated. NaCl treatment and wounding also increased the OsCam3 mRNA level, but in a more transient manner. Our results indicate that although the expression of genes encoding different calmodulin isoforms is ubiquitous, they are differentially regulated by various stress signals. In addition, we have demonstrated that the calcium-channel blocker lanthanum chloride inhibited the induction of OsCam1 gene expression by both NaCl and mannitol treatments. These results suggest that osmotic stress induced expression of OsCam1 gene requires the $[Ca^{2+}]_{cyt}$ elevation that is known to occur in response to these stimuli.

키워드

참고문헌

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, G., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Botella, J. R. and Arteca, R. N. (1994) Differential expression of 2 calmodulin genes in response to physical and chemical stimuli. Plant Mol. Biol. 24, 757-766 https://doi.org/10.1007/BF00029857
  3. Bressan, R. A. and Hasegawa, P. M. (1998) Plants use calcium to resolve salt stress. Trends Plant Sci. 3, 411-412 https://doi.org/10.1016/S1360-1385(98)01331-4
  4. Buaboocha, T. and Zielinski, R. E. (2002) Protein-protein interactions; in Calmodulin In: Annual Plant Reviews, McManus, M. T., Liang, W. and Allen, A. (eds.), pp. 285-313, Sheffield Academic Press, Sheffield, UK
  5. Delumeau, O., Morere-le Paven, M. C., Montrichard, F. and Laval-Martin, D. L. (2000) Effects of short-term NaCl stress on calmodulin transcript levels and calmodulin-dependent NAD kinase activity in two species of tomato. Plant Cell Environ. 23, 329-336 https://doi.org/10.1046/j.1365-3040.2000.00545.x
  6. Dong, A., Xin, H., Yu, Y., Sun, C., Cao, K. and Shen, W. H. (2002) The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status. Plant Mol. Biol. 48, 203-210 https://doi.org/10.1023/A:1013380814919
  7. Duval, F. D., Renard, M., Jaquinod, M., Biou, V. and Montrichard, M. D. (2002) Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J. 32, 481-493 https://doi.org/10.1046/j.1365-313X.2002.01409.x
  8. Gawienowski, M. C., Szymanski, D., Perera, I. Y. and Zielinski, R. E. (1993) Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol. Biol. 22, 215-225 https://doi.org/10.1007/BF00014930
  9. Harmon, A. C., Gribskov, M. and Harper, J. F. (2000) CDPKs: a kinase for every $Ca^{2+}$ signal? Trends Plant Sci. 5, 154-159 https://doi.org/10.1016/S1360-1385(00)01577-6
  10. Heo, W. D., Lee, S. H., Kim, M. C., Kim, J. C., Chung, W. S., Chun, H. J., Lee, K. J., Park, C. Y., Park, H. C., Choi, J. Y. and Cho, M. J. (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96, 766-771 https://doi.org/10.1073/pnas.96.2.766
  11. Hodgson, C. P. and Fisk, R. Z. (1987) Hybridization probe size control: optimized 'oligolabelling'. Nucleic Acids Res. 15, 6295 https://doi.org/10.1093/nar/15.15.6295
  12. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D. and Bohnert, H. J. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889-905 https://doi.org/10.1105/tpc.13.4.889
  13. Kiegle, E., Moore, C. A., Haseloff, J., Tester, M. A. and Knight, M. R. (2000) Cell-type-specific calcium responses to drought, salt, and cold in the Arabidopsis root. Plant J. 23, 267-278 https://doi.org/10.1046/j.1365-313x.2000.00786.x
  14. Knight, M. R., Campbell, A. K., Smith, S. M. and Trewavas, A. J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524-526 https://doi.org/10.1038/352524a0
  15. Knight, M. R., Smith, S. M. and Trevawas, A. J. (1992) Windinduced plant motion immediately increases cytosolic calcium. Proc. Natl. Acad. Sci. USA 89, 4967-4971 https://doi.org/10.1073/pnas.89.11.4967
  16. Knight, H. and Knight, M. R. (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci. 6, 261-267
  17. Knight, H., Trewavas, A. J. and Knight, M. R. (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12, 1067-1078 https://doi.org/10.1046/j.1365-313X.1997.12051067.x
  18. Lee, S. H., Kim, J. C., Lee, M. S., Heo, W. D., Seo, H. Y., Yoon, H. W., Hong, J. C., Lee, S. Y., Bahk, J. D., Hwang, I. and Cho, M. J. (1995) Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J. Biol. Chem. 270, 21806-21812 https://doi.org/10.1074/jbc.270.37.21806
  19. Liao, B., Gawienowski, M. C. and Zielinski, R. E. (1996) Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms. Arch. Biochem. Biophys. 327, 53-60 https://doi.org/10.1006/abbi.1996.0092
  20. Ling, V., Perera, I. Y. and Zielinski, R. E. (1991) Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol. 96, 1196-1202 https://doi.org/10.1104/pp.96.4.1196
  21. Limpinuntana, V. (1978) Physiological aspects of adaptation of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) to low oxygen concentrations in the root environment. Ph.D. thesis, University of Australia, Australia
  22. Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S. and Gruissem, W. (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific response coupling in plants. Plant Cell 14, 389-400
  23. Peersen, O. B., Madsen, T. S. and Falke, J. J. (1997) Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on $Ca^{2+}$ binding and implications for kinase activation. Prot. Sci. 6, 794-807 https://doi.org/10.1002/pro.5560060406
  24. Persechini, A., White, H. D. and Gansz, K. J. (1996) Different mechanisms for $Ca^{2+}$ dissociation from complexes of calmodulin with nitric oxide synthase or myosin light chain kinase. J. Biol. Chem. 271, 62-67 https://doi.org/10.1074/jbc.271.1.62
  25. Reddy, V. S., Ali, G. S. and Reddy, A. S. N. (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J. Biol. Chem. 277, 9840-9852 https://doi.org/10.1074/jbc.M111626200
  26. Rodriguez-Concepcion, M., Yalovsky, S., Zik, M., Fromm, H. and Gruissem, W. (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J. 18, 1996-2007 https://doi.org/10.1093/emboj/18.7.1996
  27. Takezawa, D., Liu, Z. H., An, G. and Poovaiah, B. W. (1995) Calmodulin gene family in potato: developmental and touchinduced expression of the mRNA encoding a novel isoform. Plant Mol. Biol. 27, 93-703
  28. Van der Luit, A. H., Olivari, C., Haley, A., Knight, M. R. and Trewavas, A. J. (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol. 121, 705-714 https://doi.org/10.1104/pp.121.3.705
  29. Xiao, C., Xin, H., Dong, A., Sun, C. and Cao, K. (1999) A novel calmodulin-like protein gene in rice which has an unusual prolonged C-terminal sequence carrying a putative prenylation site. DNA Res. 6, 179-181 https://doi.org/10.1093/dnares/6.3.179
  30. Verwoerd, T. C., Dekker, B. M. and Hoekema, A. (1989) A smallscale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17, 2362 https://doi.org/10.1093/nar/17.6.2362
  31. Yamakawa, H., Mitsuhara, I., Ito, N., Seo, S., Kamada, H. and Ohashi, Y. (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur. J. Biochem. 168, 3916-3929
  32. Yang, T. and Poovaiah, B. W. (2003) Calcium/calmodulinmediated signal network in plants. Trends Plant Sci. 8, 505-512 https://doi.org/10.1016/j.tplants.2003.09.004
  33. Zielinski, R. E. (1998) Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 697-725 https://doi.org/10.1146/annurev.arplant.49.1.697
  34. Zielinski, R. E. (2001) Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta 214, 446-455

피인용 문헌

  1. Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species vol.13, pp.1, 2013, https://doi.org/10.1186/1471-2229-13-70
  2. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress vol.213, 2013, https://doi.org/10.1016/j.plantsci.2013.08.013
  3. Analysis of calcineurin activity by capillary electrophoresis with laser-induced fluorescence detection using peptide substrate vol.31, pp.3, 2008, https://doi.org/10.1002/jssc.200700326
  4. Mechanisms of sodium uptake by roots of higher plants vol.326, pp.1-2, 2010, https://doi.org/10.1007/s11104-009-0076-0
  5. Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses vol.30, pp.4, 2011, https://doi.org/10.1080/07352689.2011.587725
  6. New changes in the plasma-membrane-associated proteome of rice roots under salt stress vol.9, pp.11, 2009, https://doi.org/10.1002/pmic.200800340
  7. The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice vol.55, pp.3, 2012, https://doi.org/10.1007/s12374-011-0154-8
  8. Expression of calmodulin and lipid transfer protein genes in Prunus incisa x serrula under different stress conditions vol.29, pp.3, 2009, https://doi.org/10.1093/treephys/tpn036
  9. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice vol.58, pp.1, 2015, https://doi.org/10.1007/s12374-014-0349-x
  10. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas vol.8, 2017, https://doi.org/10.3389/fpls.2017.00482
  11. Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum vol.6, pp.3, 2011, https://doi.org/10.4161/psb.6.3.13867
  12. Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress vol.48, pp.8, 2010, https://doi.org/10.1016/j.plaphy.2010.04.011
  13. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress vol.86, 2013, https://doi.org/10.1016/j.envexpbot.2010.01.009
  14. Rice Gene OsDSR-1 Promotes Lateral Root Development in Arabidopsis Under High-Potassium Conditions vol.54, pp.3, 2011, https://doi.org/10.1007/s12374-011-9154-y
  15. Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression vol.169, pp.18, 2012, https://doi.org/10.1016/j.jplph.2012.08.004
  16. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting vol.152, pp.3, 2009, https://doi.org/10.1016/j.cbpb.2008.11.006
  17. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3 vol.79, pp.1-2, 2012, https://doi.org/10.1007/s11103-012-9896-z