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Abstract : This study was carried out to construct a single diameter and a single height model that could
localize Chamaecyparis obtusa stand grown in 3 Southern regions of Korea. Dummy variables, which
convert qualitative information such as geographical regions into quantitative information by means of a
coding scheme (0 or 1), were used to localize growth models. In results, modified form of Gompertz
equation, Y2=exp(ln(Y])exp(—B(TfT])W(TZZ—le))Jr(oHCL,A1+B1kl+[32k2)(1fexp(-B(Tz—Tl)—W(TZZ—TIZ)), for
diameter and height was successfully disaggregated to provide different projection equation for each of the
3 regions individually. The use of dummy variables on a single equation, therefore, provides potential
capabilities for testing the justification of having different models for different sub-populations, where a
number of site variables such as altitude, annual rainfall and soil type can be considered as possible
variables to explain growth variation across regions.
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Introduction

General systems of growth projection have often been
developed to cover large geographic forest areas or
regions. Examples of these include PROGNOSIS (Stage,
1973), STEMS (Belcher ef al., 1982), and SIDFIR. (Law,
1990). However because of their broad development,
some potential exists that these models will not provide
adequate sensitivity of estimation for sub-regions. This is
because unexplained factors within sub-regions can be
averaged for the whole area, but not within sub-regions,
resulting in biased estimates. When intensive forest man-
agement demands growth predictions that are sensitive at
regional or sub-regional levels, then general models lose
their credibility and growth models will be restricted at
sub-region level (Whyte ef af., 1992).

Some methods have been used for localizing regional
models to sub-regions. The method of stratification involves
modeling each different stratum individually. To justify
this hypothesis, all differences between parameters of
each stratum must be conduced. Burkhart and Tennent
(1977) used this method to fit site index equations for
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radiata pine grown in New Zealand. Other methods have
been used to localize growth models. Smith (1983) used
the double sampling technique of Cochran (1977), to
calculate an annual adjustment factor of diameter incre-
ment of the STEMS model (Shifley and Fairweather,
1983). The Bayesian method of estimating model coef-
ficients has also been used by Berkey (1982) and Green
et al. (1992). Green ef al. (1992) reported a reduction of
more than 50% in residual mean squares (RMS) by
simultaneously estimating Honduran pine yield equation
coefficients, for sub-populations with 21 different soil
site groups. Gertner (1984) used a sequential Bayesian
method, which adjusted the parameter estimates through
time to localize a diameter increment model taken from
STEMS.

Dummy variables have also been used to localize
growth and yield models. These variabies are used to
convert qualitative information such as geographical
region and season of the year into quantitative informa-
tion by means of a coding scheme (0 or 1). This method
involves formulation of an analysis of covariance among
regions or data sets, by representing each as a dummy
variable within a single equation. Gujarat (1970) has
demonstrated the general approach of this method, and
Ferguson (1979) used 4 dummy variables to localize a
basal area increment model for 5 different forests,
mainly to represent different rainfall patterns. The use of
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dummy variables thus provides potential capabilities for
testing the justification of having different models for
different sub-populations, where a number of site vari-
ables such as altitude, latitude, distance from the sea,
annual rainfall and soil type can be considered as pos-
sible variables to explain growth wvariation across
regions.

Therefore, the objective of this study was to construct
a single diameter and a single height model using dummy
variables that could localize Chamaecyparis obtusa stand
grown in 3 Southern regions of Korea.

Materials and Methods

In order to derive diameter and height equations, the
data were used from Chamaecyparis obtusa temporary
plots grown in Mt. Chukrycong of Jeonnam, Mt. Mun-
soo of Jeonbuk and Namhae of Gyeongnam provinces.
All of 60 plots, which were 20 m <20 m size each plot,
were used for analysis. From the each plot, 1 dominant
free was selected and cut. After cutting the sample trees
diameter and heights of the certain age were measured
using the stem analysis. The basic data obtained from
stem analysis were transformed into projection format of
intervals between measurement time T, and T, that used
to build equation. A summary of relevant plot statistics
is given in Table 1:

The methods used for this study were algebraic dif-
ference equation (Borders er af., 1984) that has been
widely used for growth and yield modeling studies. The
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main standard statistical procedures used were non-linear
least-squares regression based on PROC NLIN in Sta-
tistical Analysis System (SAS Inc, 1990). The deriva-
tive-free method (DUD), which was found to be best in
convergence, was adopted for non-linear least-squares
regression among the algorithms of PROC NLIN pro-
cedures used to estimate parameters (Ralston and Jen-
nrich, 1979).

The PROC UNIVARIATE procedure was also used to
examine the residuals and provide several statistics that
are valuable for making inferences about residuals pat-
terns. The important values utilized in the analysis of
this study were mean of residuals, skewness, kurtosis
and extreme values. In addition, graphical charts and
plots were used to check the distributions of residuals
with regard to normality of errors. Residuat errors were
plotted against predicted values to determine goodness
of fit. Because whether or not the residual patterns lay
normally about the zero reference line are of the impor-
tant criterion for judging the independent distribution.

The commonly adopted height projection equations
are log-reciprocal (Schumacher, 1939; Woollons and
Wood, 1992), Chapman-Richards (Piennar and Turnbull,
1973; Goulding, 1979), Gompertz (Whyte and Woollons,
1990), Weibull (Yang et al., 1978; Goulding and Shiley,
1979) and Hossfeld (Lm Xu, 1990). The functional
forms of projection equations used are presented in
Table 2.

To fest for a difference in slopes, an interaction term
called a slope dummy variable is forms by multiplying

Table 1. Summary of each region for Chamaecyparis obtusa stands.

Areas Number of Plots Ages DB Heeh Slgpe e
(years) (om) (m) © tm)
28 16 13.6
. — 10-30 620
Gochang 20 3530 14-20 112-152
48 24 16.2
5 _ 0 15-25 500
Jangseong 0 261 30-28 134-194 ‘
Namhae 20 =L 18 o 1325 200
1-52 8§-26 04138

Table 2. General forms of projection equations applied to data.

Equation name

Equation Forms*

Schumacher anamorphic
Hossfeld anamorphic
Chapman-Richards anamorphic
Gompertz anamorphic
Schumacher polymorphic
Hossfeld polymorphic
Chapman-Richards polymorphic
Gompertz polymorphic

| Y, =Y, exp(-B(I/T,-1/T ")
Y, = LY )-B(UT,=1/T7)
Y, =Y, ((1-exp(-BT)) / (1-exp(- BT, 0
Y, = Y, exp(=B(exp(yT,)-exp(yT))))
Y, = exp(tn(Y (T,/T,)+o{ 1-(T /T,
Y= V(Y YT T+ 1) (1T /T,)0)
Yz = (OL/y)[”(]'B)j(l'-—(l—(y/a)Yl(i'B) ))(Tz _ Tl)l-v(l-ﬁ)])(l/(l-ﬁ))
Y, = exp(In(Y Jexp(~B(T,=T, (T~ T, P+l 1-exp(-B(T,=T (T, T,%))))

*Y, = diameter and height of trees at age T,, Y, = diameter and height of trees at age T,, exp = exponential function, In = natural log-

arithm, and o, B, v are coefficients to be estimated.
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the dummy times measurement variable. Regressing Y
on both a measurement variable X, and a slope dummy
variable X, X, yields equation with form

Yi = B, + BX, + BX X, (1)

Where,

the slope relating X, to Y equals 3, when X, = 0, the
slope relating X, to Y equals 3, + B, when X, =1, B,
the coefficient on X X, equal the difference in slopes
between X, categories 0 and 1.

A test of H,: B,=0 determines whether the two
slepes differ significantly. Although the above example
applies to linear regression, the same principles are
applicable to non-linear models, The dummy variable
thus was adapted to test whether or not different models
for different sub-populations are justified.

Results and Discussion

1. Prediction of diameter growth

Most anamorphic equations generally produced biased
residuals patterns, though Schumacher and Chapman-
Richards anamerphic functions proved little bit superior
in statistics of residuals and residuals patterns to other
anamorphic equations. The statistics of residuals of the
anamorphic equations fitted are presented in Table 3
with corresponding mean square error values (MSE).

Most of the polymorphic equations generally fitted
well without apparent bias in residuals pattern. Compar-
ing residual pattern and mean square error values, the
Gompertz polymorphic function, equation (2), with
mean square error (MSE) 2.523 was found to represent
better than the other equations. The fitted coefficients
and mean square error are shown in Table 4.

Table 3. Statistics of residuals with the anamorphic equa-
tions fitted to DBH data,

Mean of
residuals

Equation name MSE Skewness Kurtosis

Schumacher 15.462 0.90 1.08 2.95
Chapman-Richards 15.681 0.90 1.07 2.77
Gompertz 38.265 3.28 0.35 045
Hossfeld 42.329 3.76 0.77 1.47

Table 4. Coefficients for polymorphic equations fitted to

DBH data.
Coefficient
Model name MSE
a p ¥
Schumacher 3.0653  0.909 - 5.075
Chapman-Richards  3.517 0.233 (.258 6.805
Gompertz 3.167 0.085 0.0001 2.523
Hossfeld 23.414 - 2405 5.377

D, = exp(In(D)exp(-p(T,~T)\+(T — T))
+ a{l-exp(-B(T, T (T, - T,)) @)

PROC UNIVARIATE in SAS with equation (2)
showed that residual statistics were satisfactory as it con-
tained -0.112 values for skewness and 0.753 values for
kurtosis. A Shapiro-Wilk test for normality was totally
accepted as 0.98 that is much closed to 1 of normal dis-
tribution.

Modifications to equation (2), with the addition and
subtraction of predictor variable namely, altitude,
which reflects largely influences of temperature, soil
fertility and rainfall, was tested to effect further
improvements. Equation (3) represents the inclusion of
altitude (Al).

D, = exp(In(D))exp(—(T,— T,) + 'Y(TZZ" le)) +(a+o,Al
(1-exp(-B(T,~ T)) + Y(T22 - le)))) 3)

In the results of adding altitude, MSE (2.476) of equa-
tion (3) was better than MSE (2.523) of equation (2).
Table 5 presents successive improvements in which
additional variable was introduced to the basic form of
the Gompertz polymorphic function. And a plot of resid-
ual values against predicted values is given in Figure 1.
A plot of residuals against predicted values indicated
that a random pattern around zero with unbiased trend.
Hence, the modified Gompertz function, which is
including altitude as a predictor variable, was chosen as
the best representative diamefer equation.

Table 5. Summary of statistics of residual values for DBH
Gompertz polymorphic equation.

Value
Statistics name Before  Afteradding  Normal
adding altitude  altitude  distribution
Mean 0.014 0.015
-~ Skewness -0.112 -0.163 0
Kurtosis 0.753 0.734 0
W:Normal 0.980 0.983 1

: A
Gd h ok E sl e wowow owH

T —T T sy
L) 19 pner 28

Figure 1. Plot of residual against predicted for DBH
Gompertz polymorphic equation,
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In order to examine the impact of locality, dummy
variables (1 or 0) representing 3 separate regions, were
added to equation (3). The Mt. Munsoo of Gochang in
Jeonbuk region was the default locality. Equation (4)
shows the form, which includes 2 dummy variables, K,
and K,, for Jangseong and Namhae regions, respec-
tively.

D, = exp(In(D))exp(—B(T,~T,)+¢(T,’-T oo Al
Bk Bk )(1-exp(—BT,-T (T, ~T))) - (4)

The asymptote o in equation (4) is the default dummy
variable representing the Gochang region. When projec-
tions are made for Jangseong, the asymptote is o +,K,,
while those for Namhae is given by a+f,K,, respec-
tively. The analysis proved that each of the 3 regions had
substantially different asymptotes, as it showed the coef-
ficient of dummy variables were different from zero at
the o = 0.05 provability level. Parameter estimation for
altitude and dummy variables in equation (4) is given in
Table o.

2. Prediction of height growth

The same procedure, which used in modeling of diam-
eter growth, was adopted for the height growth. Gener-
ally, the polymorphic equations represent better fitting
than anamorphic with this data. The statistics of resid-
uvals of the polymorphic equations fitted are presented in
Table 7 with corresponding mean square error values
{(MSE).

The ranking order of MSE was Gompertz > Hossfeld
> Schumacher > Chapman-Richards in polymorphic equa-
tion. Thus, the Gompertz polymorphic form was selected
for the best and further analysis equation with the lowest
MSE of 1.563 after comparing residual statistics.

Table 6. Coefficient estimation of altitude and dummy
variables for diameter equation.

Lower 95% Upper 95%

Coefficient Estimate Stgn dard Confidence Confidence
rror
Level Level
o, 0.00983 0.00004  0.00975 0.00991
B, 1.20004  0.01868 1.16338 1.2367
B, 421599  0.02826  4.16033 427145
Table 7. Coefficients for polymorphic equation fitted to
height data.
Coefficient
Model name MSE
o B ¥
Schumacher 4.262 0.507 - 3.469
Chapman-Richards 16702  0.969  15.294 4.999
Gompertz. 3.063 0.078 0.0004 1.563
Hossfeld 21,936 - 1.900 3.015

A modification to Gompertz equation, with the addi-
tion of altitude as an environmental factor, was tested to
effect further improvements. Equation form (5) repre-
sents the inclusion of altitude (Al).

H,= eXp(ln(H1)exp(_B(Tz_Tl)'PY(Tzz_le)) + (ota,Al)
(1-exp(—B(T,=T )+{(T,~T*)))) (5)

In the results of adding altitude, MSE(1.563) of
Gompertz equation was improved to MSE(1.226) of
equation (5) that had a mean residual error of 0.037 m
and corresponding skewness and kurtosis values of
-0.417 and 1.746, respectively. The data were evidently
well balanced as 95% of residuals lay within 1.8 m
with no detectable patterns and showed goodness of fit-
ting as shown in Figure 2.

Dummy variables were added to equation (5) to
account for possible different growth patterns across
regions (equation 6).

H, = exp(In(H,)exp(- [S(TZWTI)-&-}/(TZZ-T12))+(0L+OLIA1
Bk Bk, )(1 'exp("B(Tz'Tl)+"/(T22_T12)))) ©)

The analysis showed that each of the 3 regions had
substantially different asymptotes (o=0.05 provability
level). Therefore, height growth projections could be
made for Jangseong, the asymptote is o+, K,, while
those for Namhae 1s given by o+B.,K,. Parameter esti-
mation of altitude and dummy variables for height equa-
tion is given in Table 8.

Figure 2. Plot of residual against predicted for height
Gompertz polymorphic equation.

Table 8. Coefficient estimation of altitude and dummy
variables for height equation.

Lower 95% Upper 95%

Coeflicient Estimate Stgn dard Confidence Confidence
ITOT
Level Level
o, 0.00983  0.00004 0.00976 0.0099
B, 0.98806 0.01391 0.96077 1.01536
B, 3.72689  0.0207 3.6863 3.76749
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Conclusions

The dummy variable approach allowed one to use a
single equation for all regions and provided that there
was comparability in the growth trajectories and simply
a difference in asymptotes. In this study, when modeling
diameter and height predictions with modified Gompettz
equations, the overall equations for diameter and height
were disaggregated to provide different projection equa-
tions for each of the 3 regions individually. The follow-
ing equations proved this result.

Y, = exp(In(Y exp(-B(T,—T F{T,>-T, ") Hota, Al
Bk Bk )(1—exp(-B(T,-T (T =T ) (7)

Equation (7) is applied as default and equation (8) is
for projections for the Gochang region.

Y,= exp(ln(Yl)eXp(_B(Tz_T1)+"/(T22_T12))+(OC+0‘1A1)
(1=exp(-B(T,=T 1T, -T,))) ®)

Equation (9) includes an active dummy coefficient (3,
and variable K, for the Jangseong region.

Y, = exp(In(Y,)exp(-B(T,~T (T, T, ))+o+o, Al
+B11{1)(1“eXp(_B(Tz_Tl)"I"'Y(Tznglz)))) )]

Similarly, equation (10) contains active 3, and K, for
the Namhae region.

Y, = exp(In(Y,)exp(~B(T,~T, (T, T,*)H oo, Al
B,k )(1-exp(-B(T,~T, )_IJY(TZZ_Tl 2)))) (10)

Site quality, genotype variability and local climatic
fluctuations among different regions, can affect growth
and performance of individual trees and forests at the
stand level, resulting in different growth trends among
regions.
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