DOI QR코드

DOI QR Code

Antioxidative Activities of Kefir

  • Liu, Je-Ruei (Institute of BioAgricultural Sciences, Academia Sinica) ;
  • Lin, Yuh-Yih (Department of Dentistry, Chung Shang Medical University) ;
  • Chen, Ming-Ju (Department of Animal Science, National Taiwan University) ;
  • Chen, Li-Ju (Department of Animal Science, National Taiwan University) ;
  • Lin, Chin-Wen (Department of Animal Science, National Taiwan University)
  • Received : 2004.06.17
  • Accepted : 2004.12.08
  • Published : 2005.04.01

Abstract

This study aims to evaluate the antioxidative activities of cow-milk kefir and goat-milk kefir. Antioxidative mechanisms, including radical-scavenging effects, ferrous-ion chelating ability, reducing power and antioxidant activity, were investigated herein. Kefirs demonstrated significantly greater scavenging effects upon 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals, an inhibition effect upon linoleic-acid peroxidation, and more substantial reducing power, but reduced glutathione peroxidase (GSH-Px) activity than was the case for milks. There was no significant difference between milks and kefirs as regards ferrous-ion chelating ability and superoxide dismutase (SOD) activity. These findings have demonstrated that kefirs possess antioxidant activity, thereby suggesting that kefirs are potential candidates for the role of useful natural antioxidant supplements for the human diet.

Keywords

References

  1. Ahotupa, M., M. Saxelin and R. Korpela. 1996. Antioxidative properties of Lactobacillus GG. Nutr. Today 31:51S-52S.
  2. Allen, J. C. and W. L. Wrieden. 1982. Influence of milk proteins on lipid oxidation in aqueous emulsion. I. Casein, whey protein and $\alpha$-lactalbumin. J. Dairy Res. 49:239-248.
  3. Angulo, L., E. Lopez and C. Lema. 1993. Microflora present in kefir grains of the Galician region (north-west of Spain). J. Dairy Res. 60:263-267.
  4. Asada, K. 1976. Occurrence of superoxide dismutase in bovine milk. Agr. Biol. Chem. 40:1659-1660.
  5. Burk, R. F. 1997. Selenium-dependent glutathione peroxidases. In Comprehensive Toxicology (Ed. F. P. Guengerich). Pergamon, London, pp. 229-242.
  6. Decker, E. A. and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38:674-677.
  7. Fiat, A. M., D. Migliore-Samour, P. Jolles, L. Drouet, C. B. Sollier and J. Caen. 1993. Biologically active peptides from milk with emphasis on two examples concerning antithrombotic and immunomodulating activities. J. Dairy Sci. 76:301-310.
  8. Frenkel, K. 1992. Carcinogen-mediated oxidant formation and DNA damage. Pharmacol. Ther. 53:127-166.
  9. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87:175-188. https://doi.org/10.1111/j.1574-6968.1990.tb04887.x
  10. Granelli, K., L. Bjorck and L. A. Appelqvist. 1995. The variation of superoxide dismutase (SOD) and xanthine oxidase (XO) activities in milk using an improved method to quantitate SOD activity. J. Sci. Food Agric. 67:85-91.
  11. Gutteridge, J. M. C., S. K. Paterson, A. W. Segal and B. Halliwell. 1981. Inhibition of lipid peroxidition by the iron-binding protein lactoferrin. Biochem. J. 199:259-261.
  12. Halliwell, B. and J. M. C. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1-4.
  13. Halliwell, B. and J. M. C. Gutteridgu. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186:1-85.
  14. Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutri. Rev. 52:253-265.
  15. Ham, J. S., J. S. Kim, K. H. Hoog, J. G. Kim, S. G. Jeong, H. S. Dhae, J. N. Ahn, D. K. Kang and H. U. Kim. 2003. Inhibitory activity of lactic acid bacteria against hazardous microbes. Asian-Aust. J. Anim. Sci. 16:1550-1554.
  16. Hojo, Y. 1982. Selenium concentration and glutathione peroxidase activity in cow’s milk. Biol. Trace Elem. Res. 4:233-239.
  17. Hoolbrook, J. J. and C. L. Hicks. 1918. Variation of superoxide dismutase in bovine milk. J. Dairy Sci. 61:1072-1077.
  18. La Riviere, J. W. M., P. Kooiman and K. Schmidt. 1967. Kefiran, a noval polysaccharide produced in the kefir grain by Lactobacillus brevis. Arch. Microbiol. 59:269-278.
  19. Lahov, E. and W. Regelson. 1996. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem. Toxicol. 34:131-145.
  20. LeBlanc, L. G., C. Matar, J. C. Valdez, J. Leblanc and G. Perdigon. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J. Dairy Sci. 85:2733-2742.
  21. Lin, C. W., C. L. Chen and J. R. Liu. 1999. Identification and characterisation of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust. J. Dairy Technol. 54:14-18.
  22. Lin, M. Y. and C. L. Yen. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47:1460-1466.
  23. Lin, M. Y. and F. J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ACTT 4356. Digest. Dis. Sci. 45:1617-1622.
  24. Lindmark-Mansson, H. and B. Akesson. 2000. Antioxidative factors in milk. Br. J. Nutr. 84:S103-S110.
  25. Liu, J. R., S. Y. Wang, Y. Y. Lin and C. W. Lin. 2002. Antitumor activity of milk-kefir and soymilk-kefir in tumor-bearing mice. Nutri. Cancer 44:182-187.
  26. Marshall, V. M., W. M. Cole and B. E. Brooker. 1984. Observations on the structure of kefir grains and the distribution of the microflora. J. Appl. Bacteriol. 57:491-497.
  27. Marshall, V. M. and W. M. Cole. 1985. Methods for making kefir and fermented milks based on kefir. J. Dairy Res. 52:451-452.
  28. Meucci, E., A. Mordente and G. E. Martorana. 1991. Metalcatalyzed oxidation of human serum albumin: conformational and functional changes. J. Biol. Chem. 266:4692-4699.
  29. Montgomery, D. C. 1999. Experiments with a single factor: the analysis of variance. In Design and Analysis of Experiments (Ed. D. C. Montgomery). John Wiley and Sons, New York, pp. 75-77.
  30. Nishino, T., H. Shibahara-Sone, H. Kikuchi-Hayakawa and F. Ishikawa. 2000. Transit of radical scavenging activity of milk products prepared by Maillard reaction and Lactobacillus casei strain Shirota fermentation through the hamster instestine. J. Dairy Sci. 83:915-922.
  31. Oyaizu, M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucose-amine. Jpn. J. Nutri. 44:307-315.
  32. Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid and DNA repair systems in oxidative stress: the free radical theory of aging revisited. Gerontology 37:166-180.
  33. Pena-Ramos, E. A. and Y. L. Xiong. 2001. Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84:2577-2583.
  34. Pryor, W. A. 1991. The antioxidant nutrients and disease prevention-What do we know and what do we need to find out? Am. J. Clin. Nutr. 53:S391-S393.
  35. Robak, J. and I. R. Gryglewski. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharma. 37:837-841.
  36. Sanders, M. E. 1993. Summary of conclusions from a consensus panel of experts on health attributes of lactic cultures: significance to fluid milk products containing cultures. J. Dairy Sci. 76:1819-1828. https://doi.org/10.3168/jds.S0022-0302(93)77514-1
  37. Sanders, J. W., K. J. Leehouts, A. J. Haandrikmam, G. Venema and J. Kok. 1995. Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177:5254-5260.
  38. Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948.
  39. Simic, M. G. 1988. Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat. Res. 202:377-386. https://doi.org/10.1016/0027-5107(88)90199-6
  40. Statistical Analysis System Institute. 1998. SAS User’s Guide: Statistics. SAS Institute Inc., Cary, NC.
  41. Suetsuna, K., H. Ukeda and H. Ochi. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11:128-131.
  42. Tong, L. M., S. Sasaki, D. Julian McClements and E. A. Decker. 2000. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 48:1473-1478.
  43. Wong, P. Y. Y. and D. D. Kitts. 2003. Chemistry of buttermilk solid antioxidant activity. J. Dairy Sci. 86:1541-1547.
  44. Yamaguchi, T., H. Takamura, T. Matoba and J. Terao. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1,-diphenyl-2-picrylhydrazyl. Biosci. Biotechno.l Biochem. 62:1201-1204.
  45. Ye, X. Y. and T. B. Ng. 2000. Purification and characterization of glycolactin, a novel glycoprotein from bovine milk. Life Sci. 66:1177-1186.
  46. Yen, G. C., P. D. Duh and C. Y. Chuang. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70:437-441.

Cited by

  1. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides vol.4, pp.12, 2013, https://doi.org/10.1039/c3fo60262a
  2. Microbiological, Physicochemical, and Antioxidant Properties of Plain Yogurt and Soy Yogurt vol.49, pp.4, 2013, https://doi.org/10.7845/kjm.2013.3074
  3. The Influence of Goat Milk and Soybean Milk Kefir On IL-6 and Crp Levels in Diabetic Rats vol.22, pp.3, 2015, https://doi.org/10.1515/rjdnmd-2015-0032
  4. Antidiabetic Potential of Kefir Combination from Goat Milk and Soy Milk in Rats Induced with Streptozotocin-Nicotinamide vol.35, pp.6, 2015, https://doi.org/10.5851/kosfa.2015.35.6.847
  5. Kefir: a powerful probiotics with anticancer properties vol.34, pp.11, 2017, https://doi.org/10.1007/s12032-017-1044-9
  6. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence pp.1475-2700, 2018, https://doi.org/10.1017/S0954422417000191
  7. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage pp.1364727X, 2018, https://doi.org/10.1111/1471-0307.12561
  8. Comparison of antioxidant capacity of cow and ewe milk kefirs vol.101, pp.5, 2018, https://doi.org/10.3168/jds.2017-13871
  9. The Effects of Freeze Drying and Rehydration on Survival of Microorganisms in Kefir vol.19, pp.1, 2005, https://doi.org/10.5713/ajas.2006.126
  10. Development and Verification of an Optimum Composition Model for a Synbiotic Fermented Milk Using Sequential Quadratic Programming Techniques vol.19, pp.10, 2005, https://doi.org/10.5713/ajas.2006.1490
  11. Study on Skin Care Properties of Milk Kefir Whey vol.19, pp.6, 2005, https://doi.org/10.5713/ajas.2006.905
  12. A change in antioxidative capacity as a measure of onset to oxidation in pasteurized milk vol.18, pp.5, 2008, https://doi.org/10.1016/j.idairyj.2007.11.012
  13. Antioxidative Activities of Hydrolysates from Duck Egg White Using Enzymatic Hydrolysis vol.22, pp.11, 2005, https://doi.org/10.5713/ajas.2009.90119
  14. Investigation of the Protective Effect of Kefir against Isoproterenol Induced Myocardial Infarction in Rats vol.38, pp.2, 2005, https://doi.org/10.5851/kosfa.2018.38.2.259
  15. The effects goat milk yoghurt casein on malondialdehyde (MDA) level of rats (Rattus norvegicus) exposured by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCCD) vol.509, pp.None, 2005, https://doi.org/10.1088/1757-899x/509/1/012026
  16. Kefir: A Synbiotic with Approved Anticarcinogenic Properties vol.17, pp.8, 2005, https://doi.org/10.2174/1573407216999201228191806
  17. Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine vol.116, pp.None, 2005, https://doi.org/10.1016/j.tifs.2021.07.038
  18. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice vol.21, pp.1, 2005, https://doi.org/10.1186/s12906-021-03358-3