DOI QR코드

DOI QR Code

Investigation on the Surface Hydrophobicity and Aggregation Kinetics of Human Calprotectin in the Presence of Calcium

  • Yousefi, Reza (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Ardestani, Susan K. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, Ali Akbar (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Kariminia, Amina (Immunology lab., Pasteur Institute of Iran) ;
  • Zeinali, Madjid (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Amani, Mojtaba (Institute of Biochemistry and Biophysics, University of Tehran)
  • Published : 2005.07.31

Abstract

Calcium and zinc binding protein, calprotectin is a multifunctional protein with broad spectrum antimicrobial and antitumoural activity. It was purified from human neutrophil, using a two-step ion exchange chromatography. Since surface hydrophobicity of calprotectin may be important in membrane anchoring, membrane penetration, subunits oligomerization and some biological roles of protein, in this study attempted to explore the effect of calcium in physiological range on the calprotectin lipophilicity. Incubation of human calprotectin ($50\;{\mu}g/ml$) with different calcium concentrations showed that 1-anilino-8-naphthalene sulfonic acid (ANS) fluorescence intensity of the protein significantly elevates with calcium in a dose dependent manner, suggesting an increase in calprotectin surface hydrophobicity upon calcium binding. Our study also indicates that calcium at higher concentrations (6, 8 and 10 mM) induces aggregation of human calprotectin. Our finding demonstrates that the starting time and the rate constant of calprotectin aggregation depend on the calcium concentration.

Keywords

References

  1. Ackerman, P., Glover, C. V. and Osheroff, N. (1985) Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro. Proc. Natl. Acad. Sci. USA 82, 3164-3168 https://doi.org/10.1073/pnas.82.10.3164
  2. Akiyama, H., Ikeda, K., Katoh, M., McGeer, E. G. and McGeer, P. L. (1994) Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J. Neuroimmunol. 50, 195-201 https://doi.org/10.1016/0165-5728(94)90046-9
  3. Bella, J. and Rossmann, M. G. (1999) Rhinoviruses and their ICAM receptors. J. Struc. Biol. 128, 69-74 https://doi.org/10.1006/jsbi.1999.4143
  4. Berntzen, H. B., Olmez, u., Fagerhol, M. K. and Munthe, E. (1991) The leukocyte protein L1 in plasma and synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol. 20, 74-82 https://doi.org/10.3109/03009749109165280
  5. Bogumil, T., Rieckmann, P., Kubuschok, B., Felgenhauer, K. and Bruck, W. (1998) Serum levels of macrophage-derived protein MRP8/14 are elevated in active multiple sclerosis. Neurosci. Lett. 247, 195-197 https://doi.org/10.1016/S0304-3940(98)00263-8
  6. Bucciantin, M., Giannoni, E., Chiti, F., Baroni, F., Formigili, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M. and Stefani, M. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507-511 https://doi.org/10.1038/416507a
  7. Burgess, W. H., Jemiolo, D. K. and Kretsinger, R. H. (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochem. Biophysic. Acta 623, 257-270 https://doi.org/10.1016/0005-2795(80)90254-8
  8. Crestfield, A. M., Moore, S. and Stein, W. H. (1963) The preparation and enzymatic hydrolysis of reduced and Scarboxymethylated proteins. J. Biol. Chem. 238, 622-627
  9. Dale, I., Fagerhole, M. K. and Naesgaard, I. (1983) Purification and partial characterization of a highly immunogenic human leukocyte protein L1 antigen. Eur. J. Biochem. 134, 1-6 https://doi.org/10.1111/j.1432-1033.1983.tb07522.x
  10. Dorin, J. R., Novak, M., Hill, R. E., Brock, D. J. H., Secher, D. S. and van Heynigen, V. (1987) A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature 326, 614-617 https://doi.org/10.1038/326614a0
  11. Edgeworth, J., Freemont, P. and Hogg N. (1989) Ionomycin regulated phosphorylation of the myeloid calcium binding protein P14. Nature 342, 189-192 https://doi.org/10.1038/342189a0
  12. Guignard, F., Mauel, J. and Market, M. (1996) Phosphorylation of myeloid related proteins MRP-14 and MRP-8 during human neutrophil activation. Eur. J. Biochem. 241, 265-271 https://doi.org/10.1111/j.1432-1033.1996.0265t.x
  13. Heizmann, C. W. and Hunziker, W. (1991) Intracellular calcium binding protein: More sites than insights. Trends Biochem. Sci. 16, 98-103 https://doi.org/10.1016/0968-0004(91)90041-S
  14. Hessian, P. A., Edgeworth, J. and Hogg, N. (1993) MRP8 and MRP14, two abundant $Ca^{2+}$-binding proteins of neutrophils and monocytes. J. Leuk. Biol. 53, 197-204
  15. Kerkhoff, C., Klempt, M., Kaever, V. and Sorg, C. (1999) The two calcium-binding proteins, S100A8 and S100A9 are involved in the metabolism of arachidonic acid in human neutrophils. J. Biol. Chem. 274, 32672-32679 https://doi.org/10.1074/jbc.274.46.32672
  16. Klempt, M., Melkonyan, H., Nacken, W., Wiemann, D., Holtkemper, U. and Sorg, C. (1997) The heterodimer of the $Ca^{2+}$-binding proteins MRP-8 and MRP-14 binds arachidonic acid. FEBS Letters 408, 81-84 https://doi.org/10.1016/S0014-5793(97)00394-3
  17. Lawrance, I. C., Fiocchi, C. and Chackravarti, S. (2001) Ulcerative colitis and Crohn,s disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum. Mol. Genet. 10, 445-456 https://doi.org/10.1093/hmg/10.5.445
  18. Morishima, Y., Gotoh, Y., Zieg, J., Barrett, T., Takano, H., Flavell, R., Davis, R. J., Shirasaki, Y. and Greenberg, M. E. (2001) B-amyloid induces neuronal apoptosis via mechanism that involve the c-jun N-terminal kinase pathway and the induction of fas ligand. J. Neurosci. 21, 7551-7560
  19. Mossman, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  20. Muesch, A., Hartmann, K., Rohde, A., Rubartellio, R. and Rapopart, T. A. (1990) A novel pathway for secretory proteins. Trends Biochem. Sci. 15, 82-86 https://doi.org/10.1016/0968-0004(90)90184-D
  21. Muller, F., Froland, S. S., Aukrust, P. and Fagerhol, M. K. (1994) Elevated serum calprotectin levels in HIV-infected patients: The calprotectin response during ZDV treatment is associated with clinical events. J. Acquir. Immune Defic. Syndr. 7, 931-939
  22. Murao, S., Collart, F. R. and Huberman, E. (1998) A protein containing the cystic fibrosis antigen is an inhibitor of protein kinases. J. Biol. Chem. 262, 8356-8360
  23. Murao, S., Collart, F. R. and Huberman, E. (1989) A protein containing the cystic the fibrosis antigen is an inhibitor of protein kinase. J. Biol. Chem. 264, 8356-8360
  24. Ordink, K., Cerletti, N., Bruggen, J., Clerc, R. J., Tarcsay, L., Zwadlo, G., Gerhards, G., Shlegel, R. and Sorg, C. (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330, 80-82 https://doi.org/10.1038/330080a0
  25. Rammes, S., Kewitz, G., Versmold, H., Niggemann, B. and Rammes, A. (1997) Myeloid related protein (MRP)8 and MRP14, calcium binding proteins of the S100 family, are secreted by activated monocytes via a novel tubulin-dependent pathway. Pediatr. Allergy Immunol. 8, 153-155 https://doi.org/10.1111/j.1399-3038.1997.tb00170.x
  26. Robinson, M. J. and Hogg, N. (2000) A comparison of human S100A12 with MRP-14 (S100A9). Biol. Biophys. Res. Comm. 275, 865-870 https://doi.org/10.1006/bbrc.2000.3407
  27. Roth, J., Burwinkel, F., VandenBos, C., Goebeler, M., Vollmer, E. and Sorg, C. (1993) MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calciumdependent manner. Blood 82, 1875-1883
  28. Satoru, Y., Mikami, M., Kazusa, T. and Yamazaki, M. (1997) Growth inhibitory and apoptosis-inducing activities of calprotectin derived from inflammatory exudates cells or normal fibroblasts: regulation by metal ions. J. Leukocyte Biol. 61, 50-57
  29. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  30. Skoog, W. and Beck, W. S. (1956) Studies on the fibrinogen, dextran and phytohemagglutinin methods of isolating leukocytes. Blood 11, 436-454
  31. Squier, T. C. (2001) Oxidatve stress and protein aggregation during biological aging. Exp. Gerontol. 36, 1539-1550 https://doi.org/10.1016/S0531-5565(01)00139-5
  32. Stefani, M. and Dobson, C. M. (2003) Protein aggregatron and protein toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678-699 https://doi.org/10.1007/s00109-003-0464-5
  33. Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochem. Biophys. Acta 1739, 5-25 https://doi.org/10.1016/j.bbadis.2004.08.004
  34. Steinbakk, M., Naess-Andersen, C. F., Lingaas, E., Dale, I., Brandtzaeg, P. and Fagerhol, M. K. (1990) Antimicrobial actions of calcium binding leukocyte $L_1$ protein, calprotectin. Lancet. 336, 763-765 https://doi.org/10.1016/0140-6736(90)93237-J
  35. Stetler, D. A. and Rose, K. M. (1982) Phosphorylation of deoxyribonucleic acid dependent RNA polymerase II by nuclear protein kinase NII: mechanism of enhanced ribonucleic acid synthesis. Biochemistry 21, 3721-3728 https://doi.org/10.1021/bi00258a030
  36. Teigelkamp, S., Bhardwaj, R. S., Roth, J., Meinardus-Hager, G., Karas, M. and Sorg, C. (1991) Calcium independent complex assembly of the myeloid differentiation proteins MRP-8 and MRP-14. J. Biol. Chem. 266, 13462-13467
  37. Tibble, J., Sigthorsson, G., Foster, R., Sherwood, R., Fagerhol, M. and Bjarnason, I. (2001) Faecal calprotectin and faecal occult blood tests in the diagnosis of colorectal carcinoma and adenoma. Gut. Sep 49, 402-408 https://doi.org/10.1136/gut.49.3.402
  38. Vogl, T., Propper, C., Hartmann, M., Strey, A., Strupat, K., Van den Bos, C., Sorg, C. and Roth, J. (1999) S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J. Biol. Chem. 274, 25291-25296 https://doi.org/10.1074/jbc.274.36.25291
  39. Wagner, D. W. and MacDonald, P. J., (1998) The fluorescence enhancement of 1-anilinonaphtalene-8-sulfonate (ANS) by modified B-cyclodextrins. J. Photochem. Photobiol. Chem. 114, 151-157 https://doi.org/10.1016/S1010-6030(98)00210-X
  40. Zhang, L., Xing, G. Q., Barker, J. L., Chang, Y., Maric, D., Ma, W., Li, B-S. and Rubinow, D. R. (2001) $\alpha$-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signaling pathway. Neurosci. Lett. 312, 125-128 https://doi.org/10.1016/S0304-3940(01)02205-4

Cited by

  1. Quantification of S100A12 (EN-RAGE) in Blood Varies with Sampling Method, Calcium and Heparin vol.65, pp.2, 2007, https://doi.org/10.1111/j.1365-3083.2006.01875.x
  2. Effect of Homocysteine Thiolactone on Structure and Aggregation Propensity of Bovine Pancreatic Insulin vol.30, pp.5, 2011, https://doi.org/10.1007/s10930-011-9333-1
  3. Comparative Analysis of Calcium-Binding Myeloid-Related Protein-8/14 in Saliva and Serum of Patients With Periodontitis and Healthy Individuals vol.87, pp.2, 2016, https://doi.org/10.1902/jop.2015.150254
  4. Structure–cytotoxicity relationship of a novel series of miconazole-like compounds vol.21, pp.8, 2012, https://doi.org/10.1007/s00044-011-9716-z
  5. Synthesis and characterization of some new Schiff base complexes of group 13 elements, ab initio studies, cytotoxicity and reaction with hydrogen peroxide vol.101, 2013, https://doi.org/10.1016/j.saa.2012.09.007
  6. EFFICACY OF SOUR WHEY AS A SHELF-LIFE ENHANCER: USE IN ANTIOXIDATIVE EDIBLE COATINGS OF CUT VEGETABLES AND FRUIT vol.30, pp.5, 2007, https://doi.org/10.1111/j.1745-4557.2007.00144.x
  7. Biochemical and immunological aspects of protein aggregation in neurodegenerative diseases vol.11, pp.6, 2014, https://doi.org/10.1007/s13738-014-0491-x
  8. Effect of large colon ischemia and reperfusion on concentrations of calprotectin and other clinicopathologic variables in jugular and colonic venous blood in horses vol.74, pp.10, 2013, https://doi.org/10.2460/ajvr.74.10.1281
  9. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin vol.122, 2014, https://doi.org/10.1016/j.saa.2013.10.070
  10. Role of calprotectin in cardiometabolic diseases vol.25, pp.1, 2014, https://doi.org/10.1016/j.cytogfr.2014.01.005
  11. Nicotine Reduces the Cytotoxic Effect of Glycated Proteins on Microglial Cells vol.35, pp.4, 2010, https://doi.org/10.1007/s11064-009-0095-5
  12. Effect of Whey Protein Coating on Quality Attributes of Low-Fat, Aerobically Packaged Sausage during Refrigerated Storage vol.73, pp.6, 2008, https://doi.org/10.1111/j.1750-3841.2008.00829.x
  13. Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer vol.106, pp.9, 2009, https://doi.org/10.1073/pnas.0810473106
  14. Purification and partial characterization of canine calprotectin vol.90, pp.9, 2008, https://doi.org/10.1016/j.biochi.2008.03.008
  15. Synthesis, characterization, and thermodynamic studies of the interaction of some new water-soluble Schiff-base complexes with bovine serum albumin vol.65, pp.4, 2012, https://doi.org/10.1080/00958972.2012.661419
  16. Human Calprotectin: Effect of Calcium and Zinc on its Secondary and Tertiary Structures, and Role of pH in its Thermal Stability vol.39, pp.10, 2007, https://doi.org/10.1111/j.1745-7270.2007.00343.x