FKM 고무를 내층재료로 한 연료호스의 가스 투과성 연구

Gas Permeation Study of Fuel Hose Composed as Inner Material of FKM Rubber

  • 발행 : 2005.06.30

초록

국제 환경규제에 적합한 자동차용 연료 호스를 개발하기 위하여, 배합조건을 달리한 FKM 고무재료를 내층재료로 하였을 경우, 기본물성을 비롯한 내열성, 내유성, 내연료성 및 투과성을 측정하고 연료 호스재료로서의 적합성을 조사하였다. 불소 함량이 증가함에 따라 불소 고무재료는 기본물성, 내열성, 내유성 및 내연료성의 증가를 보였으며, 66%, 69%, 71% FKM 혼합물에서 카본의 양을 20 phr로 하였을 때 연료 호스의 규격을 만족하는 것으로 나타났다. 이소옥탄과 톨루엔 그리고 가솔린과 메탄올을 혼합한 연료유로써 측정한 NBR 고무와 FKM 고무의 투과성에서 FKM 고무의 경우, 불소의 함량에 따라서 미세한 투과량의 차가 나타났으나 NBR 고무보다는 투과성이 매우 우수하였다. 또한 연료유의 성분비를 달리했을 때도 FKM 고무의 투과성에는 거의 영향이 없었으며, 투과성 실험을 거친 69% FKM 고무재료의 열적 특성에도 변화가 없었다.

To develop an automotive fuel hose suitable to the international environmental regulation, FKM rubber materials as an inner material of fuel hole were prepared with different chemical compositions. Measurement of the properties of thermal resistance, oil resistance, fuel resistance, gas permeability including fundamental properties were performed to investigate compatibility for a fuel hose material. Fundamental properties, thermal resistance, oil resistance, fuel resistance and permeability of FKM rubber materials were improved with fluorine content. When the carbon content was 20 phr, FKM compounds with fluorine contents of 66%, 09% and 71% were shown to satisfy the specification oi fuel hose. The gas permeability of NBR and FKM compounds was measured on the mixed fuel oils prepared with isooctane-toluene and gasoline-methanol. FKM rubber materials showed a small difference in penetrated amount of fuel and showed a permeability superior to NBR material. he permeability of FKM rubber materials was not influenced by the contents of fuel oil. Thermal properties of 69% FKM rubber experienced by permeability testing were not variated.

키워드

참고문헌

  1. D. K. Kim, S. D. Seul, and J. E. Sohn, '내열 및 난연성 polymethyl Mathacrylate의 최적반응속도 모델에 관한 연구', J. Kor. Ins. of Rubb. Ind., 22, 324 (1987)
  2. D. J. Moon, D. K. Kim, and S. D. Seul, 'Poly (methyl methacrylate)와 poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구', J. Kor. Ins. of Rubb. Ind, 24, 11 (1989)
  3. B. Ameduri, B. Boutevin, and G. Kostov, 'Fluoroelastomer', Prog. Polym. Sci., 26, 105 (2001) https://doi.org/10.1016/S0079-6700(01)00002-8
  4. J. U. Lee, W. K. Kim, and B. H. Kim, 'A Study on the electrical property of polypropylene thin film', J. Kor. Ins. of Rubb. Ind., 21, 121 (1986)
  5. J. B, Thomas.'Permeation tube approach to longterm use of automatic sampler retention index standards', J. Chromatography A., 704, 157 (1995)
  6. G. Peter, L. Goran, and S. Goran, 'In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectode', J. Electroanalytical Chemistry, 158, 115 (2002)
  7. L. A. Wood, 'Standard ozone resistance testing of wax protected rubbers', Rubber Chemistry and Technology, 53, 116 (1980)
  8. A. I. Medalia, 'Evaluation of result of tension fatigue resistance tests on vulcanized rubber', Rubber Chemistry and Technology, 53, 988 (1980)
  9. P. Maccone, M. Apostolo, and G. Akroldi, 'Thermal degradation studies of electron beam cured terpolymeric fluorocarbon rubber', Macromolecules, 33, 1656 (2000)
  10. P. B. Jana and S. K. De, 'Thermal aging, degradation and swelling of fluororubber', Polym. Comm., 32, 376 (1991)
  11. K. H. Lee, S. J. Kim, B. K. Kim, I. S. Park, and C. Y. Park, '가황도의 예측', J. Kor. Ins. of Rubb. Ind., 29, 5 (1994)
  12. J. S. Dick and A. T. Worm, 'Storage stability of FKM compound based on a bisphenol AF/onium cure system', Rubber World, 219, 22 (1999)