Kinetics of Anhydride Curing of Epoxy : Effect of Chain Length of Anhydride

에폭시 무수화물 경화의 동력학적 연구: 무수화물의 사슬 길이 효과

  • Chung, I. (Department of Applied Chemical Engineering) ;
  • Lee, J. (Advance Materials Division, Korea Research Institute of Chemical Technology)
  • 정익수 (목원대학교 응용화학공학과) ;
  • 이재락 (한국화학연구소 화학소재연구부)
  • Published : 2005.03.31

Abstract

The ruling kinetics of epoxy resins with 3 different kinds or alkenylsuccinic anhydride (ASA) having C-8, C-12, and C-16 pendant side chain length with two different catalysts was studied by using differential scanning calorimetry (DSC). Nonisothermal and isoconversional method has been used for characterizing the effect of the pendant side chain length in the curing process. Results or nonisothermal method showed that there was no significant difference in the effect of the pendant side chain length of ASA. But isoconversional analysis showed that the value of the activation energy for the initiation reaction or C-8, C-12, and C-16 were $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, and $130.4{\sim}94.2 kJ/mol$, respectively, depending on the catalyst used. The values of activation energy for the initiation is different as reported value of 20 kJ/mol which indicating the difference in the effect of the pendant side chain length of ASA in the initial stage of the reaction.

시차열분석계(DSC)를 이용하여 달린(pendant) 탄소카본길이가 8(C-8), 12(C-12), 16(C-16)인 3 가지 종류의 무수화물(ASA)과 두 가지 촉매를 이용한 에폭시 수지의 경화 동력학을 연구하였다. 비등온(Nonisothermal)과 등전환(Isoconversional)법을 사용하였다. 비등온법의 결과는 무수화물의 달린 카본길이에 따른 결과에는 큰 차이가 없었다. 그러나 등전환법에서는 촉매사용에 따라 개시반응의 활성화 에너지가 C-8, C-12, 그리고 C-16의 경우 각각 $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, 그리고 $130.4{\sim}94.2 kJ/mol$이었다. 보고된 개시반응의 활성화에너지 20 kJ/mol 과 다른 것은 무수화물의 달린 탄소길이에 따른 효과로 해석된다.

Keywords

References

  1. R.F. Fischer, 'Polyester from Epoxides and Anhydrides', J. Polym. Sci., 44, 155 (1960)
  2. R. B. Prime, 'Thermosets', in Thermal Characterization of Polymeric Materials, 2nd Ed. Academic Press, New York, 1997
  3. V. Trappe, W. Burchard, and B. Steinmann,'Anhydride-Cured Epoxies via Chain Reaction. I. The Phenyl Glycidyl Ether/Phthalic Acid Anhydride System', Macromolecules, 24, 4738 (1991)
  4. C. C. Riccardi, J. Dupuy, and R. J. J. Williams, 'A Simple Model to Explain the Complex Kinetic Behavior of Epoxy/Anhydride Systems', J Polym. Sci. B Polym. Phys., 37, 2799 (1999)
  5. U. Khanna and M. Chanda, 'Kinetics of Anhydride Curing of Isophthalic Diglycidyl Ester Using Differential Scanning Calorimetry', J. Appl. Polym. Sci., 49, 319 (1993)
  6. L. W. Chen, S. C. Fu, and C. S. Cho, 'Kinetics of Aryl Phosphinate Anhydride Curing of Epoxy Resins Using Differential Scanning Calorimetry', Polym. Int., 46, 325 (1998)
  7. M. I. G. de Miranda, C. I. D. Bica, and D. Samios, 'Application of the Half-Width Kinetic Method on the Amine-Initiated Cross-Linking of an Epoxy Resin with Cyclic Anhydrides', Polymer, 38, 4843 (1997)
  8. S. Vyazovkin and N. Sbirrazzuoli,'Mechanism and Kinetics of Epoxy-Amine Cure Studied by Differential Scanning Calorimetry', Macromolecules, 29, 1867 (1996)
  9. S. Vyazovkin, 'A Unified Approach to Kinetic Processing of Nonisothermal Data', Int. J. Chem. Kinet., 28, 95 (1996)
  10. S. Vyazovkin and N. Sbirrazzuoli, 'Kinetic Analysis of Isothermal Cures Performed Below the Limiting Glass Transition Temperature', Macromol. Rapid Commun., 20, 387 (1999)
  11. J.C. Jung, S.K. Lee, K.S. Lee, and K.Y. Choi, 'Chain Length Effect of Alkenyl Succinic Anhydride on Thermal and Mechanical Properties of the Cured Epoxy Resins', Die Angew. Makromol. Chem., 185/186, 129 (1991)
  12. K. E. J. Barrett, 'Determination of Rates of Thermal Decomposition of Polymerization Initiators with a Differential Scanning Calorimeter', J Appl. Polym. Sci, 11, 2358 (1967)
  13. H. E. Kissinger, 'Reaction Kinetics in Differential Thermal Analysis', Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60126a028