계육에 오염된 Campylobacter 균의 불활성화 평가

Assessment of Inactivation for Campylobacter spp. Attached on Chicken Meat

  • Jang Keum-Il (Department of Food Science and Technology Chung-buk National University) ;
  • Jeong Heon-Sang (Department of Food Science and Technology Chung-buk National University) ;
  • Kim Chung-Ho (Department of Food and Nutrition, Seowon University) ;
  • Kim Kwang-Yup (Department of Food Science and Technology Chung-buk National University)
  • 발행 : 2005.12.01

초록

본 연구에서는 위생제 처리에 의해 계육에 존재하는 Campylobacter 균의 불활성화 효과를 신속하고 직접적으로 평가하고자 하였다 먼저 Campylobacter균의 계육중 오염 부위는 계육 표면의 주름진 틈 사이 및 모공 주변에 존재하였다. 그리고 TSP처리에 의한 Campylobacter균의 불활성화 효과를 in vitro 방법으로 평가한 결과, Campylobacter 균은 활성상태인 나선형에서 구형으로 형태변환이 발생하였는데, 구형으로 변환된 Campylobacter균은 배양된 배지성분이 제거된 경우 불활성화 효과가 나타내는 반면, 배지성분이 잔존한 경우 TSP처리에 의해 불활성화되지 않은 VBNC의 구형 상태로 잔존하였다. 또한 계육 표면에 오염된 Campylobacrer균을 불활성화 시키기 위해 TSP를 처리하였을 때, Campylobacter균의 모양이 구형으로 변환되었지만, TSP처리에 의해 불활성화 효과를 나타내지 않고 계육 표면에 VBNC 형태로 잔존하여 배지성분을 제거시킨 결과와 같은 결과를 나타내었다. 이는 Campylobacter균의 배지성분 내의 유기물 및 계육표면에 존재하는 유기물을 이용하여 TSP에 대한 저항력을 향상시킨 것으로 생각되며, 이는 다양한 위생제 처리에 의한 식품의 안전성을 추구하는데 있어 매우 중요한 문제점이라고 사료된다. 따라서 본 연구에서는 이와 같은 방법을 통해 계육에 존재하는 Campylobacter균에 대하여 위생제 처리에 의한 불활성화 효과를 직접적이면서 신속하게 평가할 수 있는 가능성을 확인하였다.

The inactivation efficiency of Campylobacter jejuni were assessed in vitro and in vivo using confocal laser microscopy and flow cytometry. C. jejuni cells were inactivated with $1\%$ (w/v) trisodium phosphate (TSP) and the live cells and inactivated cells were distinguished by staining with LIVE/DEAD BacLight Bacteria Viability fluorescent probe. After treatment of TSP for 5 min, most of C. jejuni cells turned to coccoid form from original spiral shape. C. jejuni cells lost total cell viability in the absence of organic nutrients but did not lost total cell viability in the presence of organic nutrients. In vivo test, C. jejuni cells turned to viable but non-culturable (VBNC) form after TSP treatment and remained alive on chicken skin. C. jejuni cells attached on chicken meat would transform to coccoid form by sanitizer treatment, but could possibly be alive by the benefits of organic nutrients present in chicken meat.

키워드

참고문헌

  1. Shin, S. Y., K. Y. Kim, and J. H. Park. 1998. Survival of Campylobacter jejuni under aerobic condition. Kor. J. Food SCI. Technol. 30: 916-923
  2. Centers for disease control. 1988. Campylobacter isolates in the United States, 1982-1986. Morbid. Morlat. Weekly Rep. 37: 1-13
  3. Koneman, E. W., S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn Jr.. 1997. Chapter 6. Curved gram-negative bacilli and oxidative-positive fermenters : Campylobacteraceae and Vibrionaceae. pp 321-361. In Color atlas and textbook of diagnostic microbiology, 5th ed. Lippincott. New York
  4. Sean, F. A., J. S. Norman, I. F. Patricia, and L. S. David. 1999. Campylobacter jejuni-An Emerging Foodborne Pathogen. Emerging lnfec. Disease 5: 28-35 https://doi.org/10.3201/eid0501.990104
  5. Oh, J. S., K. S. Shin, Y. D. Yoon, and J. M. Park. 1988. Prevalence of Campylobacter jejuni in Broilers and Chicken Processing Plants. Kor. J. Food Hygiene. 3: 27-36
  6. FDA. Bad Bug Book: Campylobacter jejui. Available from: http://www.cfsan.fda.gov/-mow/chap4.htrnl. Accessed October 1, 2005
  7. Fricker, C. R. and R. W. Park. 1989. A two-year study of the distribution of thermophilic Campylobacters in human, environmental and food samples from the Reading area with particular reference to toxin production and heat-stable serotype, J. Appl. Bacteriol. 66: 477-490 https://doi.org/10.1111/j.1365-2672.1989.tb04568.x
  8. Oliver, J. D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93-100
  9. Bogosian, G., P. J. L. Morris, and J. P. O'Neil. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. App. Environ. Microbiol. 64: 1736-1742
  10. Day, A. P. and J. D. Oliver. 2004. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J. Microbiol. 42: 69-73
  11. Besnard, V., M. Federighi, E. Declerq, F. Jugiau, and J. M. Cappelier. 2002. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet. Res. 33: 359-370 https://doi.org/10.1051/vetres:2002022
  12. Bovill, R. A. and B. M. Mackey. 1997. Resuscitation of 'nonculturable' cells from aged cultures of Campylobacter jejuni. Microbiology 143: 1575-1581 https://doi.org/10.1099/00221287-143-5-1575
  13. Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federighi. 1999. Physiological characterization of viablebut-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65: 1110-1116
  14. Stem, N. J., D. M. Jones, I. V. Wesley, and D. M. Rollins. 1994. Colonization of chicks by non-culturable Campylo-bacter spp. Lett. Appl. Microbiol. 18: 333-336 https://doi.org/10.1111/j.1472-765X.1994.tb00882.x
  15. Jones, D. M., E. M. Sutcliffe, and A. Curry. 1999. Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137: 2477-2482
  16. Breen, P. J., H. Salari, and C. M. Compadre. 1997. Elimination of Salmonella contamination from poultry tissue by Cetylpyridinium chloride solutions. J. Food Prot. 60: 1019-1021 https://doi.org/10.4315/0362-028X-60.9.1019
  17. Chung, K. T., J. S. Dickson, and J. D. Crouse. 1989. Effects of nisin on growth of bacteria attached to meat. Appl. Environ. Microbiol. 55: 1329-1333
  18. Hwang, C. A. and L. R. Beuchat. 1995. Efficacy of selected chemical for killing pathogenic and spoilage microorganisms on chicken skin. J. Food Prot. 58: 19-23 https://doi.org/10.4315/0362-028X-58.1.19
  19. Xiong, H., Y. Li, M .F. Slavik, and J. T. Walker. 1998. Spraying chicken skin with selected chemicals to reduce attached Salmonella typhimurium. J. Food Prot. 61: 272-275 https://doi.org/10.4315/0362-028X-61.3.272
  20. Kim, C. R. and K. H. Kim. 2000. Physicochemical quality and gram negative bacteria in refrigerated chicken legs treated with trisodium phosphate and acetic acid. Food Sci. Biotechnol. 9: 218-221
  21. Kim, K. Y., J. F. Frank, and S. E. Craven. 1996. Threedimensional visualization of Salmonella attachment to poultry skin using confocal scanning laser microscopy. Lett. Appl. Microbiol. 22: 280-282 https://doi.org/10.1111/j.1472-765X.1996.tb01161.x
  22. Chung, K. T., J. S. Dickson, and J. D. Crouse. 1989. Attachment and proliferation of bacteria on meat. J. Food Prot. 52: 173-177 https://doi.org/10.4315/0362-028X-52.3.173
  23. Cappelier, J. M., C. Magras, J. L. Jouve, and M. Federighi. 1999. Recovery of viable but non-culturable Campylobacter jejuni cells in two animal models. Food Microbiol. 16: 375-383 https://doi.org/10.1006/fmic.1998.0246
  24. Dickson, J. S. and M. E. Anderson. 1992. Microbiological decontamination of food animal carcasses by washing and sanitizing system: A review. J. Food Prot. 55: 133-140 https://doi.org/10.4315/0362-028X-55.2.133
  25. Thomas, C. J. and T. A. McMeekin. 1984. Effect of water uptake by poultry tissues on contamination by bacteria during immersion in bacterial suspensions. J. Food Prot. 47: 398-402 https://doi.org/10.4315/0362-028X-47.5.398
  26. Lillard, H. S. 1986. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 51: 54-56 https://doi.org/10.1111/j.1365-2621.1986.tb10834.x
  27. Dickson, J. S. and M. Koohmaraie. 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surface. Appl. Environ. Microbiol. 55: 832-836