International Journal of Kais. Special Edition December 2005

Encoding of XML Elements for Mining Association Rules

Gongzhu Hu', Yan Liu, Qiong Huang
Central Michigan University, USA

Abstract

Mining of association rules is to find associations among
data items that appear together in some transactions or
business activities. As of today, algorithms for association
rule mining, as well as for other data mining tasks, are
mostly applied to relational databases. As XML being
adopted as the universal format for data storage and
exchange, mining associations from XML data becomes an
area of attention for researchers and developers. The
challenge is that the semi-structured data format in XML is
not directly suitable for traditional data mining algorithms
and tools. In this paper we present an encoding method to
encode XML tree-nodes. This method is used to store the
XML data in Value Table and Transaction Table that can be
easily accessed via indexing. The hierarchical relationship
in the original XML tree structure is embedded in the
encoding. We applied this method to association rules
mining of XML data that may have missing data.

Keywords: XML tree, node encoding, XML indexing,
data mining, association rules.

1. Introduction

XML is a language specifying semi-structured data. Tt is
rapidly emerging as a new standard for data representation
and exchange on the Web. It is also a set of the rules and
guidelines describing semi-structured data in plain text
rather than proprietary binary representations. Since its
standardization by the W3C in 1998, XML has been the
driving force behind numerous other standards and
vocabularies that provide services to a wide range of
industries. In today’s business world, enormous amount of
data are stored in various formats to be processed and
integrated to support decision/policy making. The vast
majority of the data reside in relational databases, the most
widely used data storage and management format.
Relational databases are well-defined and applications
based on relational databases are in general very robust and
efficient. Many algorithms and methodologies have been
developed to apply to relational databases. The very basic
feature of relational databases is that the data are stored in
tables, or 2-dimensional form, in which rows represent data
objects and columns specify the attributes of the objects.

! Department of Computer Science
Central Michigan University
Mount Pleasant, MI 48859, USA
hulg@cmich.edu

That is, the wvalues of an object’s attributes are
“encapsulated” in a row (or a line for plain text data) that
can be retrieved by column-access methods (or separated by
some “delimiters” such as space, comma, tab, etc. for plain
text data). This table-based data representation is very
convenient for algorithms to access and process the data.
For example, most data mining algorithms [9] work on
relational databases. In particular, mining of association
rules works on transactions, each of which consists of one
or more items. A transaction is represented by one row of
data values, each of which is an item of the transaction.
These algorithms all assume that the data items are
arranged in this way, either in relational tables or in plain
text.

XML data, however, are organized and stored in tree-
like structures of multiple-level hierarchies. This format is
very different from 2-dimensional table, and has presented
some challenges to the algorithms and applications that
were developed based on relational tables. Considering the
task of mining association rules, the main difficulty is to
find what constitute a transaction and how to find the items
in the transactions that are the same. First, let’s review the
basic concept of association rule mining.

Mining of association rules, also called market basket
analysis in business, is to find interesting association or
correlation among data items that often appear together in
the given data set. This is a loose definition. To be more
precise, we include a formal definition [4, 9] here to make
this paper self-contained. A transaction T = {Xj, ..., X,, n >
0} is a finite set of items X; in an application domain,
indicating that these items are involved in the same
transaction T. An association rule is of the form

Xi, ooy X} = (Y1, o, Vil m k> 1

where X; and Y| are items involved in a set of transactions.
Each association rule is associated with two measures,
support and confidence. Support is the probability that a
transaction contains item set {Xi,....X,Yy,...,Yy}, and
confidence is the conditional probability that a transaction
containing {X,,...,.X,,} also contains {Y,,...,Y,}. The
association rule says that whenever X,...,X,, appear in a
transaction T, Y, ..., Y also appear in T with probabilities
given in support and confidence. In practice, the data is
given as a set of transactions T = {T),..., Ty} of size N. Let
the left-hand side of an association rule be 91 = {X,,.... X}
and the right-hand side be 3¢ = {Y,...,Y,}. The support of
the item set 9 = 9. + 3 = {X,,....%Xm,Y1,..., Yk} can be

-37-

International Journal of Kais. Special Edition December 2005

calculated by counting the number of occurrences of 8 in T,

That is,
support(3) =F(3) /N

where F(8) = Zi- n8i, 6; = 1 if 8 < T, 0 otherwise. That is,

F(9) 1s the “frequency” of 8 in T. Similarly,
confidence(Xj,...,Xm = Y1,-..,Yx) = Fs.(9r) / F(81)

where Fg () is the frequency (number of occurrences) of

9y in those transactions that contains 3;.

There are several algorithms for finding association
rules, for example, the Apriori Algorithm [20]. These
algorithms iteratively calculate frequent itemsets of
progressively increasing sizes, starting from singleton sets,
that satisfy the minimum support and confidence levels.
The iteration steps are quite straightforward, largely due to
the simplicity of the way the input data are structured as a
2-dimensional table. If the data are given in XML format,
however, the algorithms may be complicated in locating
transactions and the itemsets in the data. If the XML data
have only two levels, there won’t be any complications
because the XML file can be easily converted to a 2-D
table. However, XML documents are not always so simple;
they often contain hierarchies of more than two levels and
have arbitrary user-defined tags for representing document
elements, and allow the elements to be organized in a
nested structure regardless of the existence of an explicitly
specified document, the descriptor or schema. Consider the

example given below.

<?xml version="1.0" 2>
<CATALOG>

<CD>
<TITLE>Moonlight</TITLE>
<ARTIST>Sam Brown</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>A and M</COMPANY>

</CD>

<CD>
<TITLE>Flying</TITLE>
<ARTIST>

<firstname>Savage</firstnam>
<lastname>Rose</lastname>

</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>

</CD>

<CD>
<TITLE>Highland</TITLE>
<ARTIST>Sam Brown</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>A and M</COMPANY>

</CD>

</CATALOG>

In this example, the transactions and the items in the
transactions are not given as clearly as in relational tables.
But when we take a close look at the file, we can find that
there exists some correlation among the data elements. For
example, the association rule {Sam Brown, A and M} =
{UK} holds with support 0.67 and confidence 1.0. The
question is how to identify the items that are considered in
the same “transactions” and can be easily retrieved. Finding
the “same” items in XML is much more complex than that
in 2-D tables where the items are primary types (strings and
numbers). Because of the nature of the tree structure, an
XML element is an object composed of sub-elements as its
children, except those leaf elements that are of primary
types. This is conceptually similar to what is considered in
multilevel data mining tasks where data items are
composite objects. However, the levels in traditional
multilevel data mining tasks are “predetermined” based on
the schema defined on relational databases or data cubes,
whereas the “levels” in XML data are not well-defined
because they are semi-structured and there may not be a
schema defined on the XML documents. Even a schema
exists, there may be missing elements and varying number
of sub-elements of the same tag name, among other flexible
features of XML.

We present in this paper a solution to the problem of
mining association rules on XML data by an encoding
method that assigns a unique code to each different tag
name and using 2-dimensional array (or vector of vectors)
to store the data with the tag codes to index the collection.
The code of an element embeds the codes of its children, so
that the parent-child relationship can be easily determined
by simple operations on the codes. With this coding
scheme, we can also easily determine if two elements are
the same because their children’s codes are embedded in
the parents’ codes. This coding method is in fact equivalent
to the recursive definition of structure-equivalence in
programming languages. And, we give a new method that
organizes the XML data into 2-dimensional arrays for easy
operations.

The data mining method we use is based on the Apriori
Algorithm — a basic algorithm for association rule mining.
We use bottom-up algorithms to get all the rules for any
level including cross-levels.

2. Related Work

A lot of work have been done on association rule mining
since it was first introduced by Agrawal, Imielinski, and
Swami [1]. Shortly after, Agrawal and Srikant, and Mannila
et al. published the Apriori algorithm, independently [3, 20]
and jointly [2]. Several variations of the Apriori algorithm
were proposed, including use of hash table to improve the
mining efficiency {22], partitioning the data to find
candidate itemsets [24], reducing the number of
transactions [3, 10, 22], sampling [27], and dynamic itemset

-38 -

counting [5]. Various extensions of association rule mining
were also studied [8, 12, 13, 19, 23] and is still an active
research area.

Han and Fu [10, 11}, and Srikant and Agrawal [26]
proposed methods for multilevel association rule mining
that is to certain degree similar to working on a tree
structure like the one in XML. Paircéir el. at. extended
multilevel mining to distributed systems [21]. Multilevel
association rule mining finds rules at different abstraction
levels of the concept hierarchy of the data items. For
example, there may not be a strong association between
“Gateway E4100 computer” and “HP 960 inkjet printer”
because the items are too specific and hence spread in the
multidimensional space too thin to have a strong support,
but there would be such association at a higher abstraction
level, such as between “Gateway computer” and “HP
printer”, or an even higher level as between “computer” and
“printer.” Mining association rules at different levels
requires that the data items are categorized in a concept
hierarchy before the algorithms can be applied. For
example, the data should contain the information “HP 960
inkjet printer is an HP printer, which is a printer.” This
information needs to be provided by the applications in
question.

Data in XML format are naturally form a hierarchy.
However, it in general does not reflect the multilevel
abstraction of the data items. The hierarchy in an XML file
mostly represents the “has-a” relationship between a higher
level item and its children rather than the “is-a” relationship
as used in multilevel association rule mining. Hence the
multilevel mining methods do not directly apply to XML
data, or at least not easily.

Although applying data mining algorithms to XML data
has not been extensively studied as of today, there are some
research work reported. Some commercial products such as
XML Miner [7] are also available. Buchner et al. [6]
outlined the XML mining and pointed out research issues
and problems in the area. Hu [14] also discussed the
problems of mining XML documents, particularly with
respect to the tree structure (vs. tables in relational
databases) and semantics of XML. Lee and her colleagues
[17, 18] proposed a method for preparing XML documents
for quantitative determination of the similarity between
XML documents based on the XML semantics. Their
method may be used to find items that appear together for
discovering association rules.

The XML technologies related to the work presented in
this paper include XML parsers (Document Object Model
or DOM [28], Simple Access XML or SAX {25]). We do
not use any specific query language to query the XML data
for association rules; rather, we simply apply the Apriori
algorithm to find all rules (of sizes from 2 to the maximum
size allowed by the data) using user-provided parameters

International Journal of Kais. Special Edition December 2005

(minimum support and minimum confidence). This paper is
an extension of our preliminary work [15] where the basic
XML tree encoding scheme was established. This paper
extends that work by adding more experimental results and
shows the encoding method can help mining association
rules involving missing data.

3. Encoding of XML Elements

Because XML data can be abstracted to a tree structure
by an XML parser, we use the tree terminologies (root,
level, sub-tree, node, parent, child, sibling, leaf, path, etc.)
throughout this paper. An XML element starts with a start-
tag (e.g. <name>) and ends with an end-tag (e.g. </name>).
Between the two tags is the “actual data” of the element,
which may in turn contain sub-elements. For the purpose of
association rule mining, we consider the first level elements
as “transactions.” The sub-level elements are considered
items in the transactions.

To keep track of the relationships between the nodes on
different levels, we use several data structures to hold some
information coming from the DTD and the DOM tree
produced by an XML parser (e.g. IBM parser [16]). First,
the nodes in the tree are encoded so that each node is
assigned a unique number that embeds in it the location
information of the node as well as the relationship between
the node and its parent and siblings. Two “2-dimensional
arrays” (vector of vectors) are used to hold the values of the
nodes and information about the “transactions.” These 2-D
arrays are indexed by tag names and elements’ values for
fast access. First, let’s introduce the encoding of the nodes.

3.1 Coding for XML elements

Let an element E be a node in the DOM tree constructed
from a given XML file. E and its siblings (all nodes having
the same parent of E) are ordered based on the order in
which the elements appear in the DTD file under the same
parent tag. That is, each node is assigned a unique ordinal
number, d, among its siblings, starting from 1. Nodes under
different parents may have the same ordinal number but
they are on different paths. For example, in example 1
given before, the tags <TITLE>, <ARTIST>,
<COUNTRY>, and <COMPANY> have ordinal numbers
1, 2, 3, and 4, respectively under their parent tag <CD>.
The tags <firstname> and <lastname> are assigned ordinal
numbers 1 and 2 under parent <ARTIST>.

Now, we can encode E with an integer C of n digits
where n is the number of nesting levels of the XML as

C:d|...dn

where d; is the ordinal number of the node along the path
from the root to E, or 0 if the level of E in the tree is less
than i. That is, the code C is 0-filled on the right if E is not a
leaf node. Here we do not count the outmost tag (e.g.

-39.

International Journal of Kais. Special Edition December 2005

<CATELOG>). For example, there are three nesting levels
in the example XML file and hence each node is encoded
using a 3-digit number (3-integer number, in fact). The tag
<CD> will be encoded as 100, <TITLE> 110, <ARTIST>
120, <firstname> 121, <lastname> 122, <COUNTRY> 130,
<COMPANY> 140, etc. The tree nodes and their codes are

shown in Figure 1.
CD STORE

100
CD

110‘4/ \1‘30\’140

TITLE ARTIST COUNTRY COMPANY

121/ \122

firstname lastname

Figure 1. Tree nodes encoding of the example XML.

This encoding method is also easy to apply for node
insertion and deletion. Once the nodes are encoded, we can
store the values of the elements in a 2-D array (lengths of
the rows may differ, as vector of vectors), called the Value
Table. We can also store information about the
“transactions” (considering the first-level tag as a

transaction) in a Transaction Table.

3.2 Value Table

Each XML element has a “value” as given in the XML
file and its code as discussed above. Only the codes of the
elements are used during the mining of association rules.
However, we need to show the values of the elements in the
association rules when the rules are found. The Value Table
serves the purpose of code-value mapping by storing the
“values” of the elements in an array (again, can be
considered a vector of vectors) with the elements’

encodings to index the rows.

We get the structure of XML file from its DTD and
make an index (i.e. encoding) for each tag name. The
indexes are stored in a hash table. All occurrences of the
same tag pame are stored in a vector pointed to by the
index. When a new element is encountered while parsing
the XML file, it is appended at the end of the row indicated
by the indexing code. There are two kinds of elements: leaf
nodes that have actual values and intermediate nodes that
have “composite values.” For a leaf node, we simply put the
actual value (character string, for example) in the row. For
an intermediate node, the composite value stored in the row
cell is represented by a string of its children’s positions in
respective rows. To be more precise, let V denote the Value

Table. The value stored in a cell of the table

Vir]lc] = actual value if it is a leaf node,

Otherwise
Vir[c] = .Li.L,...L

where L; is the column number of the i-th child of the node
whose tag’s code is r. Here, c is the column number of the
row where the value is stored. Note that we put a dot before
each L; just to distinguish the sequence from a numeric
value that may be an actual value of a leaf element and to
make the process (decomposition of the sequence) simple.

Consider the previous example, the Value Table with the
hash header will look like the following shown in Figure
2. Note that the “lengths” of the rows are different because
there may be different number of values for each tag. That
is the reason we have mentioned the “equivalence”
between array and vector of vectors.

Hash header Value Table
<CD> 100 A1 1.2222(3114
<TITLE> 110 Moonlight | Flying | Highland
<ARTIST> 120 Sam Brown | .1.1
<firstname> 121 Savage
<lastname> 122 Rose
<COUNTRY> | 130 UK EU
<COMPANY> [140 AandM | Polydor

Figure 2. Value Table with hash header.

Here, each element (tag name) is encoded in a 3-digit
number as discussed before and shown in the hash header.
All distinct values of the same tag name are stored in the
same row pointed to by the code of the tag (e.g. 100 for
<TITLE>). If a node is a composite element (e.g. <CD>, or
<ARTIST> with sub-elements <firstname> and
<lastname>), the “value” of the element is the combination
of the location of the “values” of all its children. For
example, the third <CD> element is stored in column 3 of
the 1% row, which stores for all CD’s. Its value is “.3.1.1.1,”
meaning that it has 4 children (of codes 110, 120, 130, and
140), in columns 3, 1, 1, and 1, respectively. Namely,
“Highland,” “Sam Brown,” “UK,” and “A and M.”

For the same token, the second <CD> element is stored
in column 2 of the row for all CD’s. Its value is “.2.2.2.2”
indicating that the values of its 4 children are all in column
2 of their respective rows. The second child (an <ARTIST>
element) is itself a composite element with value “.1.1”
indicating that it has two children in column 1 of the row
for <firstname> (first child of <ARTIST>) and column 1 of
the row for <lastname> (second child of <ARTIST>). This
is shown in the shaded cells in Fig. 2.

3.3 Transaction Table

The Transaction Table bholds the information of the
transaction sets. Because XML is of a multilevel tree

-40-

structure, it is a primary task to organize the transaction
table in such a way that it will support easy retrieval of
information at all levels related to association rules without
storing redundant data. The transaction table is information-
encoded instead of the traditional transaction table as
classical association rule mining algorithms would apply to.
Each row in the Transaction Table represents a
“transaction,” although not in the traditional sense.
Columns of the table are the tag names. A cell in the table is
an encoded string, which is a concatenation of the position
of the element in the hierarchy and its value index. That is,
let T be the Transaction Table. T[r][c] represents the item
of transaction r with tag name c. The value stored in the cell
is

A=T[r][c]=tv

where t is the code of the tag and A represents the value of
the item in the Value Table cell V[t]{v]. The advantage of
this representation is the easy cross-reference between V
and T and the simplicity of decomposition of the digit
sequence to get the indexes. In our implementation, we
encode the information intobits, combine them
together and convert to an integer just to reduce space. This
requires fewer bits than using the object ID or barcode
methods. The Transaction Table for the example in our
previous discussion is shown in Table 1.

Table 1. Transaction Table for the example XML

tid Tag name index

100 | 110 {120 | 121) 122 | 130 | 140
0 {1001{ 1101 {1201 1301 | 1401
1 11002] 1102 | 1202 (1211 1221 | 1302 | 1402
2 [1003| 1103 | 1201 1301 | 1401

In the table, each cell is a 4-digit number, which is a
concatenation of a 3-digit number and a 1-digit number. For
example, T[1][120]=1202 is concatenation of 120 and 2,
meaning that the code of the item’s tag name is 120 (which
is <ARTIST>) and the value of the item is stored in
V{120][2] (which is .1.1 indicating a composite value with
<firstname> and <lastname>).

Using this organization of the Transaction Table and
Value Table, we have avoided storing redundant data (same
value but with different tag names) and still kept the
hierarchical relationships between the elements intact.
Another problem is about missing data (DTD may define an
element that can appear zero or more times). When
processing the XML data, we should consider the different
structures of the transactions including the missing and
disordering of its sub-elements appearing in the XML file.
The approach we use is to use an array to represent the
pattern of a “right” element whose sub-elements are all
present and in the order given in the DTD. The actual XML
data are checked against the pattern. If a sub-element is
missing or not in the “right” order according to the DTD,

-41 -

International Journal of Kais. Special Edition December 2005

the “digit” for the sub-element in the encoding would be
filled with a special symbol.

Furthermore, we used the term “digit” above in the

encoding, but in fact it is an integer so that it can represent a
number larger than 9. Hence, the code of an element is a
sequence of integers separated by a dot. Each integer is of
log;o(N)+1 digits where N is the number of children of the
node. Decomposing the sequence is just a matter of going
through the sequence, only a bit more work than if they
were digits.

3.4 Algorithms

Here are the algorithms for encoding of the XML

elements and for building the Value Table and Transaction
Table.

Encoding

get structure information from DTD;
get children from root into a collection of vectors;
for each vector in the collection
for each element of this vector
while the element has children
get its children into a new vector;
add it to the collection;
N = number of children;
encoding each child (i.e. using log;o(N)+1),
and push it into a hash map;

Building Value Table and Transaction Table

parse XML document to get the DOM tree;
trans = 0;
for each sibling of the first child of root
trans ++;
col = V[trans].size;
if this node 1s a leaf element
V[trans]{col++] = attribute name
else
value = concatenation of the “values” along
the path from root;
V[trans][col++] = value;
T[trans}{tag code] = concatenation of code of
tag name and col of the value in V;

4. Mining Association Rules

We use the Apriori algorithm in this paper. It is the very

basic and an influential algorithm for mining frequent
itemsets for association rules dealing with the
presence/absence of items. We shall briefly describe the
basic idea of the Apriori algorithm below, and then discuss
some modifications so that it becomes more flexible.

4.1 Apriori Algorithm

A set of items is called an itemser. An itemset of size k is

called a k-itemset. An itemset that satisfies the minimum
support level is called a frequent k-itemset, denoted Ly. The

International Journal of Kais. Special Edition December 2005

task of association rule mining is to find frequent k-itemsets
of a given k. The Apriori algorithm starts with frequent 1-
itemsets, L, and then iteratively finds L;.; from L; until
i+1=k. Each iteration step consists of a join operation and a
prune operation. The join operation joins L; with itself to
produce a candidate set C;, which is a superset of L;;, and in
general quite large. The prune operation deletes the
members in C; that are not frequent (i.e. those that do not
meet the minimum support requirement) to produce L.
This pruning significantly reduces the size of C; and at the
same time still guarantees that nothing useful is removed.
This is possible because of the Apriori property that says all
nonempty subsets of a frequent itemset must also be

frequent.

Once the frequent k-itemsets are found, it is
straightforward to generate association rules that also

satisfy the minimum confidence level:

1. For each frequent itemset L, generate all nonempty

subsets of L.

2. For each nonempty subset S of L, output the rule S

= L — § if the rule satisfies min-confidence.

It is clear that all association rules generated by this

algorithm are of size |L|.

4.2 Modifications to the Algorithm

As mentioned above, the traditional Apriori algorithm is
to find the k-frequent itemsets for a given k. That is, all
association rules resulted from the algorithm contains k
items. However, if we want to find all association rules of
sizes from 2 to k, we should have kept those frequent i-
itemsets in L; that were pruned while calculating L;.; but
they did satisfy the minimum support in the previous
iteration. These i-itemsets can generate association rules of
size i although they won’t be in rules of size i+1. We added,
therefore, an additional data structure (a Collection) to store
the frequent i-itemsets during the iteration so that smaller
sized association rules will also be found, rather than just

the longest possible rules.

Another modification is to allow the user to select the
elements he or she is interested in for finding associations.
This may not be desirable as far as data mining is
concerned (DM is supposed to find something unexpected),
but sometimes the user does know for sure some items are
not interesting. By selecting only certain items would cut
the sizes of the itemsets and result in much faster
computation. This can be done by presenting to the user the
list of items extracted from the DTD. For a data set given in
the next section that has four levels in the hierarchy, it will
find over one hundred rules (many of which are not at all
interesting to the user), but by selecting three items, the
number of rules found is reduced to only 11, and the time

spent on the computation is cut by 2/3.

S. Experiments

We have tested the mining algorithm with the encoding
method on several small XML files, which may not be very
meaningful in the real world, but just to show the feasibility
of our approach.

5.1 Example of Music CDs

Here we show an example that is an extension of the
example used in the previous sections. In this example,
there are nine CDs, the element <ARTIST> many contain
the PCDATA (name of the artist) or sub-elements
<firstname> and <lastname>, and some elements (like
<PRICE> and <YEAR> may be missing from a CD.

<?xml version="1.0" ?>
<CATALOG>
<CD>
<TITLE>Moonlight</TITLE>
<ARTIST>Sam Brown</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>A and M</COMPANY>
</CD>
<CD>
<TITLE>Flying</TITLE>
<ARTIST>
<firstname>Savage</firstname>
<lastname>Rose</lastname>
</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>
</CD>
<CD>
<TITLE>Highland</TITLE>
<ARTIST>Sam Brown</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>A and M</COMPANY>
</CD>
<CD>
<TITLE>Romanza</TITLE>
<ARTIST>Andrea Bocelli</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>
<PRICE>10.80</PRICE>
<YEAR>1996</YEAR>
</CD>
<CD>
<TITLE>
When a man loves a woman
</TITLE>
<ARTIST>
<firstname>Savage</firstname>
<lastname>Rose</lastname>
</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>
<PRICE>8.70</PRICE>
<YEAR>1987</YEAR>
</CD>
<CD>
<TITLE>Romanza2</TITLE>
<ARTIST>Andrea Bocelli</ARTIST>

42 -

<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>

<PRICE>10.80</PRICE>

International Journal of Kais. Special Edition December 2005

<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>
<PRICE>10.80</PRICE>

<YEAR>1996</YEAR> <YEAR>1996</YEAR>
</CD> </CD>
<CD> </CATALOG>

<TITLE>Black angel</TITLE>

<ARTIST>

<firstname>Savage</firstname>

<lastname>Rose</lastname>
</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Mega</COMPANY>

<PRICE>10.90</PRICE>

The Value Table and Transaction Table for this XML
are computed and shown below in Table 2 and Table 3.

If the user did not select any specific tags, the algorithm
just finds all association rules satisfying a given support and
confidence level. For example, for min-support = 0.3 and
min-confidence = 0.7, a total of 38 rules were found. Note

<YEAR>1995</YEAR> that the individual rules may have different support and
</CD> confidence measures, all above the minimum required. Also
<CDb>

<TITLE>1999 Grammy Nominees</TITLE>
<ARTIST>Many</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Grammy</COMPANY>

<PRICE>10.20</PRICE>

note that the total number rules found with our algorithm is
more than that found by the traditional Apriori algorithm.
The reason is, as mentioned before, that the traditional
Apriori algorithm throws away those that satisfy the min-
support at iteration i but failed the test at iteration i+1 due to

<YEAR>1999</YEAR> the increasing size of the frequent itemsets.
</CD> The 38 rules that were obtained are shown on the next
<CD> page. Note that they are only for a given min-support and
ig\%g; Iiomanza3</ TITLE> min-confidence requirements. The numbers of rules mined

_) differ for different support and confidence levels.
<firstname>Savage</firstname>

<lastname>Rose</lastname>

</ARTIST>
Table 2. Value Table
Tag index
100 A1 2222 | 3114 432211 | 522222 | 632211 | 722333 | 843444 | 9222141
When a 1999
110 Moonlight | Flying Highland | Romanza man loves | Romanza2 | Black angel | Grammy Romanza3
awoman Nominees
Sam Andrea
120 Brown 11 Bocelli Many
121 Savage
122 Rose
130 UK EU USA
140 AandM Polydor | Mega Grammy
150 10.80 8.70 10.90 10.20
160 1996 1987 1995 1999
Table 3. Transaction Table
TID Tag Name Index
100 110 120 121 122 130 140 150 | 160
0 1001 | 1101 | 1201 1301 | 1401
1 1002 | 1102 | 1202 | 1211 | 1221 | 1302 | 1402
2 1003 | 1103 | 1201 1301 | 1401
3 1004 | 1104 | 1203 1302 | 1402 | 1501 | 1601
4 1005 | 1105 | 1202 | 1211 | 1221 | 1302 | 1402 | 1502 | 1602
5 1006 | 1106 | 1203 1302 | 1402 | 1501 | 1601
6 1007 | 1107 | 1202 | 1211 | 1221 | 1302 | 1403 | 1503 | 1603
7 1008 | 1108 | 1204 1303 | 1404 | 1504 | 1604
8 1009 | 1109 | 1202 | 1211 1221 1302 1402 | 1501 | 1601

-43 -

International Journal of Kais. Special Edition December 2005

rule O0: {1996} = {Polydor}

rule 1: {1996, 10.80}) = {Polydor}

rule 2: {Polydor} = {1996, 10.80}

rule 3: ({1996} = {10.80}

rule 4: {10.80} = (1996}

rule 5: {Polydor} = {10.80}

rule 6: {10.80} = {Polydor}

rule 7: {1996, Polydor} = {10.80}

rule 8: {10.80} = {1996, Polydor}

rule 9: {1996, EU} = {Polydor} ..

rule 10: {Polydor} = {1996,EU}

rule 11: {1996,10.80,EU} => {Polydor}

rule 12: {Polydor} => {19%6,10.80,EU}

rule 13: {Polydor, EU} = {1996, 10.80}

rule 14: {1996, 10.80} = {Polydor, EU}

rule 15: {1996, EU} = {10.80}

rule 16: {10.80} = {1996, EU}

rule 17: {10.80,EU} = {1996}

rule 18: {1996} = {10.80, EU}

rule 19: {Polydor, EU} = {10.80}

rule 20: {10.80} = {Polydor, EU}

rule 21 {10.80, EU} = {Polydor}

rule 22: {Polydor} = {10.80, EU}

rule 23: {1996, Polydor,EU} = {10.80}

rule 24: {10.80} = {1996, Polydor, EU}

rule 25: {10.80, EU} = {1996, Polydor}

rule 26: {1996, Polydor} = {10.80, EU}

rule 27: {10.80} = {EU}

rule 28: {EU} = {10.80}

rule 29: {199} = {EU}

rule 30: ({EU} = {1996}

rule 31: {Polydor} = {EU}

rule 32: ({EU} = {Polydor}

rule 33: {10.80, 1996, Polydor} =»> {EU}

rule 34: {EU} = {10.80, 13896, Polydor}

rule 35: {<ARTIST>
<firstname>Savage</firstname>
<lastname>Rose</lastname>

</ARTIST>} = {EU}

rule 36: {<ARTIST>
<firstname>Savage</firstname>
<lastname>Rose</lastname>

</ARTIST>} = {Polydor}
rule 37: {<ARTIST>

<firstname>Savage</firstname>
<lastname>Rose</lastname>

</ARTIST>} = {EU, Polydor}

As mentioned before, we applied different min-support
and min-confidence values for this XML data to mine
association rules. For these experiments, we did not select
any specific tag(s) to restrict the mining process for certain
target, rather we let the algorithm to find all rules that
satisfy the support and confidence requirements.

The aggregate summery of some other results is shown
in Table 4 below.

Table 4. Summary of the experiments

rules with .
min- min- total # | traditional Isal rzee::
support | confidence | rules Apriori n?le
algorithm

0.2 0.3 166 142 5
0.2 0.5 139 115 5
0.2 0.7 16 0

0.3 0.3 56 44 4
0.3 0.5 56 44 4
0.3 0.7 38 35 4

If the user chose COMPANY, ARTIST, YEAR as the
tags of interest, only 11 rules are found out of the total of
166 rules, with min-support = 0.2 and min-confidence =
0.3.

5.2 Mining Involving Missing Data

This XML document contains information about
criminal records. The XML data is given below.

<crime record>
<crime No= ”0001”>
<criminal>
<age>23</age>
<height>6.8</height>
<weight>140</weight>
</criminal >
<time>00:40</time>
<location>AA</location>
<tool>pistol</tool>

</crime>
<crime No= ”0002”7>
<criminal>

<height>6.5</height>
</criminal >
<time>13:00</time>
<location>AB</location>
</crime>
<crime No= ”“0003”>
<criminal>
<age>35</age>
<weight>150</weight>
</criminal >
<time>13:00</time>
<location>AQ</location >
</crime>
<crime No= ”00037>
<criminal>
<height>5.5</height>
<weight>138</weight>
</criminal >
<time>2:00</time>
<location>BB</location>
<tool>rope</tool>
</crime>
<crime No= ”00047>
<criminal>
<age>30</age>
<height>6.0</height>

- A4 -

International Journal of Kais. Special Edition December 2005

<weight>145</weight> <tool>bomb/tool>
</criminal > </crime> :
<time>13:00</time> </crime record>
</crime>
<crime No= “00057>

There are a lot of missing data in this XML document.

<criminal> Unlike the “transactions™ represented in relational format,
<ag?>35</ age> missing data in our method are also encoded. During the .
<height>6.2</height>
<weight>150</weight> tree node gncod{ng process, if a child node is missing tl'%e
</criminal > corresponding digit is filled with 0. Any missing data is
<time>00:30</time> encoded as its tag name code followed by 0. Thus different
<tool>knife</tool> missing data are distinguished with different code. The
</crime> encoding tree of this example is shown in Figure 3. The
<crime No= "0006"> Value Table and Transaction Table are shown in Table 5
<criminal> , and Table 6.
<weight>145</weight>
</criminal > criminal record
<time>13:00</time>
<location>CM</location> l
</crime> 100
<cr1m§ No= 00077> crime
<criminal>
<height>6</height> A/‘/ \A\>
</criminal> 110 120 130 140
<time>22:00</time> criminal . . ,
<location>ED</location> time location tool
<tool> pistol</tool> ‘//// l
</crime>
<crime No= ”00087> 111 112 113
<criminal> age height weight
<age>32</age>
</criminal>

Figure 3. Encoding tree of the criminal record

<time>1:00</time> example.

<location>ED</location>

Table 5. Value Table of the Criminal Data

100 | 1111 1 .2220 |.3230 | 4342 |.5200 | 6103 |.7250 | .826.1 | .9564

110 | 1141 .0.2.0 2.0.2 033 344 25.2 .0.04 .04.0 4.0.0

111 123 35 30 32

112 | 6.8 6.5 5.5 6.0 6.2

113 | 140 150 138 145

120 | 00:40 13:00 2:00 22:00 1:00

130 | AA AB AQ BB CM ED
140 | pistol rope knife bomb

Table 6. Transaction Table for the Criminal Data

TID Tag Name Index
100 110 111 112 113 120 130 | 140
1 1001 | 1101 | 1111 | 1121 | 1131 | 1201 | 1301 | 1401
2 1002 | 1102 | 1110 | 1122 | 1130 | 1202 | 1302 | 1400
3 1003 | 1103 | 1112 | 1120 | 1132 § 1202 | 303 | 1400
4 1004 | 1104 | 1110 | 1123 | 1133 | 1203 { 1304 | 1402
5 1005 | 1105 | 1113 | 1124 | 1134 | 1202 [1300 | 1400
6 1006 | 1106 | 1112 | 1125 | 1132 | 1201 | 1300 | 1403
7 1007 | 1107 | 1110 | 1120 | 1134 | 1202 | 1305 | 1400
8 1008 | 1108 | 1110 | 1124 | 1130 | 1204 | 1306 | 1401
9 1009 | 1109 | 1114 | 1120 | 1130 | 1205 | 1306 | 1404

-45 -

International Journal of Kais. Special Edition December 2005

With a minimal support 0.3 and confidence level 0.9, the
Apriori algorithm generated association rules that include

<time>13:00</time> = <tool> </tool>

This rule indicates that when the time of the criminal act is
13:00, the information about the tool used in the criminal
act is unknown. Probably the same unknown criminal uses
same unknown weapon which is always available around
13:00. Without the capability of processing missing data it
would be much harder to find the connection between
timing and the missing tool, which may alert for further
inspection on a certain feature of the tool. Another
interesting issue is to find if two items are always missing
together. Without some information attached to the missing
items, such the encoding approach we use in this paper,
finding the connection between these two missing items
would be a challenge, if not impossible.

As mentioned before, we use arrays in our
implementation for the -Value Table and the Transaction
Table. There is a time-space trade-off between using arrays
and using vector of vectors. Using arrays is much faster but
seems wasting a lot of space as transaction and value
holders. However, when we make indexes for tag names,
we first get the number of nodes at each level, so we can fix
the rage of the index numbers for each level. That is, we
can decide how many bits to use to express the tag names.
If the XML DOM tree is close to be balanced, using arrays
won’t waste too much space. Of course, DOM trees are
rarely balanced. Using vector of wvectors is cleaner
conceptually but a lot slower.

6. Summary and Future Work

In this paper we have discussed a method for mining
association rules from XML data. Although both data

mining and XML are by themselves known technologies if

considered alone, the combination of the two is still a
research area that is attracting more and more attentions.
The major difficult lies on the fact that the XML format is
semi-structured and does not particularly suitable for the
existing data mining algorithms. Several problems we have
to deal with, including (a) items in “transactions” may be
cross-levels and spread in different sub-trees, (b) there may
be missing data as, and (c) duplicate tag names. An
encoding scheme is used to assign each XML element a
unique code that is used to index to the Value Table and the
Transaction Table. The two tables, as “2-dimensional
arrays,” store the values of the elements and keep the
hierarchical relationships among the elements. Using this
internal data structure and indexing method, it is easy to
retrieve XML data involved in “transactions.” We used a
modified Apriori algorithm to find frequent itemsets for
mining association rules. In addition to mining rules with
data present in the XML documents, our encoding method
also allows mining with missing data. The method was
implemented and tested on some simple XML files and

produced correct results. We are currently testing on large
XML files to study the performance of the method.

For future work, we plan to study ways of applying other
data mining algorithms to XML data using the encoding
approach and data structures. We will also be working on
formulating DTD/Schema as an XML “standard” for data
mining,

References

f1] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large
databases,” in Proceedings of the ACM-SIGMOD Intl.
Conf. on Management of Data (SIGMOD’93), 207-
216, Washington, DC, July 1993,

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. 1. Verkamo, “Fast discovery of association rules,”
in Fayyad, Piatesky-Shapori, Smyth, and Uthurusamy,
editors, Advances in Knowledge Discovery and Data
Mining, 307-328, AAAI/MIT Press, 1996.

[3] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” in Proceedings of the Intl.
Conf. on Very Large Databases (VLDB 94), 487-499,
Santiago, Chile, Sept. 1994.

[4] Y. Aumann and Y. Lindell, “A statistical theory for
quantitative association rules.” Proc. 1999 Int. Conf.
Knowledge Discovery and Data Mining (KDD'99),
San Diego, CA, 261-270, Aug. 1999.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur,
“Dynamic itemset counting and implication rules for
market basket analysis,” in Proceedings of the Intl.
Conf. on Very Large Databases (VLDB’97), 265-276,
Tucson, AZ, May 1997.

[6] A. G. Buchner, M. Baumgarten, M. D. Mulvenna, S.
S. Anand, “Data mining and XML: current and future
issues,” Proceedings of the First International
Conference on Web Information Systems Engineering
(WISE'00), 127-131, Hong Kong, 2000.

[71 Edmond, “XMLMiner, XMLRule and metarules white
paper,” Sciento Inc. April 2002.

{81 H. Lu., L. Feng, and J. Han, “Beyond intra-
transaction association analysis: mining multi-
dimensional inter-transaction association rules,” ACM
Transactions on Information Systems, 423-454, Vol.
18, No. 4, October 2000.

[9] J. Han, and M. Kamber, Data Mining, Concepts and
Techniques, Morgan Kaufmann, CA, USA, 2001.

[10] J. Han and Y. Fu, “Discovery of multiple-level
association rules from large databases,” in
Proceedings of the Intl. Conf on Very Large
Databases (VLDB’95), 420-431, Ziirich, Switzerland,
Sept. 1995.

[11] J. Han and Y. Fu, “Mining muitiple-level association
rules in large database,” [EEE Transactions on
Knowledge and Data Engineering, 11:798-804, 1999.

- 46 -

[12] J. Han, L. V. S. Lakshmanan, and R. T. Ng,
“Constraint-based, multidimensional data mining.”
COMPUTER, 32(8): 46-50, 1999.

[13] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns
without candidate generation,” in Proc. ACM-
SIGMOD Int. Conf. on Management of Data
(SIGMOD'00), Dallas, TX, May 2000.

[14] G. Hu, “Mining XML documents,” in Proceedings of
the 2001 IEEE International Conference on Systems,
Man, and Cybernetics (SMC 2001), Tucson, Arizona,
Oct. 7-10, 2001.

{15] G. Hu, Y. Liu and Q. Huang, “Mining association
rules from XML data,” Proceedings of the 31° Inil.
Conf. on Computers and Industrial Engineering, pp.
44-49, San Francisco, CA, Feb. 2-4, 2002,

[16] IBM, “XML Parser for Jave,” in IBM Alphaworks
[online}. Available:
http://www.alphaworks.ibm.com/tech/xml4j.

[17] J. W. Lee, W. Lee, and W. Kim, “Preparation of
semantics-based XML mining,” In Proceedings of the
IEEE Conference on Data Mining (ICDM 2001), San
Jose, Dec. 2001.

[18] J. W. Lee, “XML Document Analysis for Semantics-
Based XML Mining,” Journal of the Korea
Information Science Society (KISS), 2001.

[19] Marek, W., Maciej, Z, “Hash-Mine: a new framework
for discovery of frequent itemsets,” Proc. Of 2000
ADBIS-DASFAA Conference, Prague, Czech
Republic, 2000.

[20] H. Minnalia, H. Toivonen, and A. 1. Verkamo,
“Efficient algorithms for discovering association
rules,” Data Mining and Knowledge Discovery
(KDD94), 181-192, Seattle, WA, July 1994.

[21] R. Paircéir, S. McClean, and B. Scotney, “Discovery
of multi-level rules and exceptions from a distributed
database,” ACM Conference on KDD 2000, Bonston,
MA, USA, 2000.

[22] J. S. Park, M. S. Chen, and P. S. Yu, “An effective
hash-based algorithm for mining association rules,” in
Proceedings of the ACM-SIGMOD Intl. Conf. on
Management of Data (SIGMOD’95), 175-186, San
Jose, CA, May 1995.

[23] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang,
“H-Mine: hyper-structure mining of frequent patterns
in large databases,” in Proc. Int. Conf. on Data
Mining (ICDM'01), San Jose, CA, Nov. 2001.

[24] A. Savasere, E. Omiecinski, and S. Navathe, “An
efficient algorithm for mining association rules in
large databases,” in Proceedings of the Intl. Conf. on

International Journal of Kais. Special Edition December 2005

Very Large Databases (VLDB’95), 432-443, Ziirich,
Switzerland, Sept. 1995.

[25] “SAX — Simple API for XML,” SAX web site, online:
http://www.saxproject.org.

[26] R. Srikant and R. Agrawal, “Mining generalized
association rules.” In VLDB'95, pp. 407-419, Ziirich,
Switzerland, Sept. 1995.

[27] H. Toivonen, “Sampling large databases for
association rules,” in Proceedings of the Inti. Conf. on
Very Large Databases (VLDB’96), 134-145, Bombay,
India, Sept. 1996.

[28] XML Working Group of W3C, “Document Object
Model (DOM),” online: http://www.w3.org/dom.

Gongzhu Hu received Bachelor
of Science in Numeric Analysis
from Tsinghua University, China,
Master of Science degree in
Computer Science from
University of Wisconsin,
Madison, and Ph. D. in Computer
Science from Michigan State
University. He is cumently a

- professor and chair of Department
of Computer Science, Central Michigan University. His
research interests include databases, data mining,
programming languages, distributed systems, and image
processing. He has published over 80 technical articles in
journals and conference proceedings. He has chaired two
international conferences. Dr. Hu is a member of IEEE and
the IEEE Computer Society, the Association for Computing
Machinery (ACM), International Society of Computers and
Their Applications (ISCA), and International Association of
Computer and Information Science (ACIS). He serves on
the Editorial Board of the IJCIS Journal.

Yan Liu received Bachelor of Science degree in computer
science from Sichuan University, China, and Master of
Science degree in computer science from Central Michigan
University. Her research in interests are in databases, data
mining, and bioinformatics.

Qiong Huang received Bachelor of Science degree in
Physics from Sichuan University, China, Master of Science
degree in Physics from Central Michigan University, and is
pursuing his Ph.D. degree in physics at the University of
Michigan, Ann Arbor. His research interests include optics,
optical instrumentation, computational physics, and
computer applications in sciences.

-47 -

