Effect of High $CO_2$ Pre-treatment on Quality of 'Hikawa Hakuho' Peach Fruits

고 이산화탄소 전처리가 '일천백봉' 복숭아의 품질 변화에 미치는 영향

  • 최정희 (한국식품연구원 유통연구단) ;
  • 임정호 (한국식품연구원 유통연구단) ;
  • 정문철 (한국식품연구원 유통연구단) ;
  • 김동만 (한국식품연구원 유통연구단)
  • Published : 2005.12.01

Abstract

This study was conducted to evaluate the efficacy of high a)z pre-treatment (60, $100\%$ for 3, 6, 12 hr) on quality of 'Hikawa Hakuho' peach fruits. High a)z treatment inhibited the respiration and ethylene production, especially with long tenn treatment for more than 6 hr. Discoloration of peel, softening and decay were reduced by high $CO_2$ treatment $CO_2$ concentration of $60\~100\%$ did not affect soluble solids content and titratable acidity of fruits. $CO_2$ treated fruits, however, showed higher sweetness score compared with control. As the $CO_2$ concentration and treatment duration increased from 60 to $100\%$ and from 3 to 12 hr, respectively, the efficacy on quality increased. Fruits treated with $100\%\;CO_2$ for 3 hr and $60\%\;CO_2$ for 12 hr, however, showed very low flavor score due to the residual $CO_2$ in flesh. High $CO_2$ injury was not noted at any $CO_2$ levels tested in this study. Above results suggest that $60\%\;CO_2$ treatment for 6 hr resulted in as good control of respiration, ethylene production, decay, discoloration and softening without off-order.

수확 후에 실시되는 고 이산화탄소(60및 $100\%$)의 전처리(3, 6, 12시간)가 '일천백봉' 복숭아의 상온 유통 중 신선도 및 부패에 미치는 영향을 조사하였다. $60\%$ 이상의 이산화탄소를 6시간 이상 전처리할 경우 상온 유통 중 호흡, 에틸렌 발생, 과피 변색 및 연화 현상이 둔화되었으며 유통기한 중 조직감이 향상되었다. 상온에서의 부패 현상도 $60\%$$100\%$를 6시간 이상 처리함으로써 크게 억제시킬 수 있었다. 복숭아과실의 가용성 고형분 함량은상온 유통중 변화하지 않았으며 고 이산화탄소 처리에 의한 영향 또한 없으나, 관능 실험 결과 단맛 지수는 무처리에 비해 처리구가 높은 것으로 나타났다. 특히 $60\%$를 6시간 처리한 과실이 조직감과 단맛 지수가 가장 높았고 전반적인 품질지수도 가장 좋았다. $100\%$ 농도의 경우 과피 변색, 호흡, 에틸렌 발생, 연화 및 부패 억제에는 효과적이나 3시간 처리만으로도 과육에 이산화탄소가 잔류하여 이취를 발생시키므로 복숭아 과실에 부적합하였으며 $60\%$ 농도 또한 6시간을 초과하여 처리할 경우 이산화탄소가 잔류되어 전반적인 선호도가 낮았다. 따라서 '일천백봉' 복숭아의 경우, $60\%$ 이산화탄소를 6시간 동안 전처리 함으로써 상온 유통되는 과실의 변색, 연화, 부패, 식미감 감소를 효과적으로 억제시킬 수 있을 것으로 판단되었다.

Keywords

References

  1. Lill, R.E., O'Donoghue, E.M. and King, G.A. (1989) Postharvest physiology of peaches and nectarines. Hort. Rev., 11, 143-452
  2. Park, J.D., Hong, S.I., Park, H.W. and Kim, D.M. (1999) Modified atmosphere packaging of peaches (Prunus persica L. Batsch) for distribution at ambient temperature. Korean J. Food Sci. Technol. 31, 1227-1234
  3. 김임수, 변재균, 조재욱, 추연대, 기산영, 최부술 (1998) 저장온도와 PE 필름 밀봉에 따른 복숭아 품종별 저장력 평가. 농촌진흥청 원예작물연구논문집 (II), 40, 41-46
  4. 이숙희, 서영진, 박선도, 정은호 (1998) 복숭아 CA 저장중 $CO_2$ 농도의 영향. 농촌진흥청 원예작물연구논문집, 40, 134-139
  5. Fernandez-Trujillo, J.P., Martinez J.A. and Artes, F. (1999) Modified atmosphere packaging affects the incidence of cold storage disorders and keeps 'flat' peach quality. Food Research International, 31, 571-579 https://doi.org/10.1016/S0963-9969(99)00030-7
  6. Kader, A.A. (1997) Biological bases of $O_2$ and $CO_2$ effects on postharvest life of horticultural perishables. Proceedings of the Seventh International Controlled Atmosphere Research Conference, 4, 160-163
  7. Retamales, J., Defilippi, B.G., Arias, M., Castillo, P. and Manriquez, D. (2003) $High-CO_2$ controlled atmospheres reduce decay incidence in Thompson Seedless and Red Globe table grapes. Postharvest Biol. Technol., 29, 177-182 https://doi.org/10.1016/S0925-5214(03)00038-3
  8. Crisosto, C.H., Garner, D. and Crisosto, G. (2002) Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of 'Redglobe' table grapes. Postharvest Biol. Technol., 26, 181-189 https://doi.org/10.1016/S0925-5214(02)00013-3
  9. Tian, S., Fan, Q., Xu, Y., Wang, Y. and Jian, A. (2001) Evaluation of the use of high $CO_2$ concentrations and cold storage to control Monilinia fructicola on sweet cherries. Postharvest Biol. Technol., 33, 53-60
  10. De Vries-Paterson, R.M., Jones, A.L. and Cameron, A.C. (1991) Fungistatic effects of carbon dioxide in a packaging environment on the decay of Michigan sweet cherry by Monilinia fructicola. Plant Dis., 75, 943-946 https://doi.org/10.1094/PD-75-0943
  11. Wilson, C.L., Franklin, J.D. and Otto, B.E. (1987) Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis., 71, 316-319 https://doi.org/10.1094/PD-71-0316
  12. Tian, S.P. and Bertolini, P. (1995) Effects of low temperature on mycelial growth and spore germination of Botrytis allii in culture and on its pathogenicity to store garlic bulbs. Plant Pathol., 44, 1008-1015 https://doi.org/10.1111/j.1365-3059.1995.tb02659.x
  13. Bertolini, P. and Tian, S.P. (1997) Effect of temperature of production of Botrytis allii conidia on their pathogenicity to harvested white onion bulbs. Plant Pathol., 46, 432-438 https://doi.org/10.1046/j.1365-3059.1997.d01-24.x
  14. Bertolini, P. and Tian, S.P. (1996) Low temperature biology and pathogenicity of Penicilium hirsutum on garlic in storage. Postharvest Biol. Technol., 7, 83-89 https://doi.org/10.1016/0925-5214(95)00025-9
  15. Tian, S.P. and Bertolini, P. (1999) Influence of conidia production temperature on morphology, germinability, and infectivity of Monilinia laxa in stored nectarine. J. Phytopathol., 147, 635-641 https://doi.org/10.1046/j.1439-0434.1999.00440.x
  16. Choi, J.H., Joeng, M.C. and Lim, J.H. (2004) Effect of short-term high $CO_2$ on growth of Botrytis cinerea. Korean J. Food Preserv., 11, 246-249
  17. Ke, D., El-Wazir, F., Cole, B., Mateos, M. and Kader, A.A. (1994) Tolerance of peach and nectarine fruits to insecticidal controlled atmosphere as influenced by cultivar, maturity, and size. Postharvest Biol. Technol., 4, 135-146 https://doi.org/10.1016/0925-5214(94)90015-9