A Study on the Hydraulic Stability of Fuel Rod for the Advanced $16{\times}16$ Fuel Assembly Design

$16{\times}16$ 개량핵연료 연료봉의 수력적 안정성에 관한 연구

  • 전상윤 (한전원자력연료(주) 설계기술원)
  • Published : 2005.12.01

Abstract

The fuel rod instability can be occurred because of the axial and cross flow due to the flow anomaly and/or flow redistribution in the lower core plate region of the pressurized water reactor. The fuel rod vibration due to the hydraulic instability is one of the root causes of fuel failure. The verification on the fuel rod vibration and instability is needed for the new fuel assembly design to verify the fuel rod instability. In this study, the fuel rod vibration and stability analyses were performed to investigate the effect of the grid height, fuel rod support condition, and span adjustment on the fuel rod vibration characteristics for the advanced $16{\times}16$ fuel assembly design. Based on the analysis results, the grid height and grid axial elevation of the advanced $16{\times}16$ fuel assembly design were proposed.

경수로 원자로 하부구조물에서 발생되는 유포의 불균일성에 기인하는 교차류와 핵연료집합체의 수력저항의 차이에 의해 발생하는 교차류, 그리고 축류 등에 의해 유발되는 연료봉의 불안정성은 핵연료손상의 원인이 될 수 있으므로, 새로운 연료 개발 시 연료봉에 대한 진동 및 안정성 해석을 수행하여 연료봉 진동과 불안정성 발생 여부를 확인하고 있다. 본 연구에서는 새로 개발된 고리 2호기용 $16{\times}16$형 개량핵연료 집합체에 대한 연료봉의 진동 및 안정성 해석을 수행하여 지지격자 높이와 위치, 그리고 지지조건 등이 연료봉의 진동특성 및 안정성에 미치는 영향을 평가하였다 그리고 해석결과에 근거하여 개량연료 집합체에서 중간지지격자 높이와 각 지지격자의 위치를 제안하였다.

Keywords

References

  1. ASME(1995) Section III, Division 1, Appendix N Article N-1000 Dynamic Analysis Methods
  2. Au-Yang, M. K.(2001) Flow-Induced Vibration of Power and Process Plant Components, Professional Engineering Publishing Limited, pp.155-196
  3. Kim, M. Y., Yun, H. T., Kwak, T. Y.(2002) Derivation of Exact Dynamic Stiffness Matrix of a Beam Column Element on Elastic Foundation, Journal of Computational Structural Engineering, 15(3), pp.463-469
  4. Lee, S. H., Park, T. H., Baek, J. W., Han, B. K.(2001) Free Vibration Analysis of Multi-Delaminated Beams, Journal of Computational Structural Engineering, 14(4), pp.469-479
  5. Paidoussis, M. P. (1973) Dynamics of Cylindrical Structure subjected to Axial Flow, Journal of Sound and Vibration, 29, pp.365-385 https://doi.org/10.1016/S0022-460X(73)80291-3
  6. Paidoussis, M. P., Mateescu, D., Woo, G. S. (1990) Dynamics and Stability of a Flexible Cylinder in a Narrow Coaxial Cylinder Duct subjected to Annular Flow, Journal of Applied Mechanics, 57, pp.232-240 https://doi.org/10.1115/1.2888309
  7. Park, N. G., Jeon, S. Y., Lee, S. H., Jeon, K. L., Lee, J. R., Kim, K. T., Dye, M. E.(2004) Dynamic Analysis of a Beam with Discretely Spaced Elastic Supports, International Modal Analysis Conference XXII
  8. Westinghouse(1989) WECAN User's Manual. Westinghouse Proprietary
  9. Westinghouse(1989) VIBAMP User's Manual, Westinghouse Proprietary
  10. Westinghouse(1999) Mechanical Design Manual. Westinghouse Proprietary
  11. Westinghouse(2000) THINC IV User's Manual, Westinghouse Proprietary
  12. Woo, G. S., Yoon, Y. B.(1994) Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylinder Duct Based on Spectral Method, Journal of the Korean Nuclear Society, 26(2), pp.212-224