Annealing Experiments of Albite Using Optical Microscope Heating Stage

광학현미경 가열실험대를 이용한 알바이트의 등온가열 실험 연구

  • Park Byung-Kyu (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim Yong-Jun (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim Youn-Joong (Division of Electron Microscopic Research, Korea Basic Science Institute)
  • 박병규 (전남대학교 지구환경과학과) ;
  • 김용준 (전남대학교 지구환경과학과) ;
  • 김윤중 (한국기초과학지원연구원 전자현미경연구부)
  • Published : 2005.12.01

Abstract

Annealing experiments on albite powders, thin sections, and TEM specimens have been performed utilizing an optical microscope heating stage. Sample orientations were determined by optical microscope and XRD, and then confirmed by TEM diffraction patterns. Partial melting of samples occurred at $1030^{\circ}C$-l2 hr for powder, but at $1060^{\circ}C$-12 hr for TEM specimen. It is difficult to get TEM images of albite microstructures above this temperature due to thickening and the amorphous phase of the melted part. Correlative studies between optical microscopy and TEM indicated that the $1050^{\circ}C$-12 hr annealing in ambient condition was most adequate to observe tweed microstructures in albite through TEM. In situ TEM heating experiments for direct observation of tweed microstructures in albite may require annealing at slightly higher temperatures than $1050^{\circ}C$ considering the high vacuum condition inside TEM.

알바이트 분말시료, 박편시료, TEM 시편용 시료를 이용하여 광학현미경 상에서 등온가열 실험을 수행하였다. 시료의 방향성은 광학현미경 및 XRD를 통하여 점검하였으며 TEM의 전자회절도형을 통해 확인하였다. 분말시료의 경우 $1030^{\circ}C$-12 hr에서, TEM 시편용 시료는 $1060^{\circ}C$-6 hr에서 부분 용융이 일어나며 이 이상의 온도에서는 용융으로 인한 시편두께 증가 및 비정질상으로의 변화로 인하여 알바이트 미세구조의 TEM 영상 획득이 어려웠다. 광학현미경과 TEM의 연계를 통한 알바이트 등온가열 실험 결과 알바이트 tweed 미세구조의 TEM 영상을 얻을 수 있는 최적 조건은 대기압 하에서는 $1050^{\circ}C$-12 hr로 파악되었다. 전자현미경 내 직접가열(in situ TEM heating) 실험의 경우 상기한 실험조건에 비해 고진공 상태임을 고려하면 $1050^{\circ}C$보다 다소 높은 온도에서 알바이트 tweed 미세구조를 직접 관찰할 수 있을 것으로 사료된다

Keywords

References

  1. 김윤중, 이영부 (2003) XRD와 TEM을 이용한 알바이트의 구조 및 상전이 연구, 한국광물학회지, 16, 91-106
  2. 김윤중, 이영부, 박병규, 이정후 (2004) 전자회절도형을 이용한 장석의 구조 분석에 대한 고찰, 한국광물학회지, 17, 177-187
  3. 김윤중, 정종만, 이영부, 이수정, 송지호 (2001) 분말시료의 투과전자현미경 직접 가열 실험법 연구, 한국전자현미경학회지, 31, 315-323
  4. Bowen, N.L. (1913) The melting phenomena of the plagioclase feldspars. Amer. J. Sci., 35, 577-599 https://doi.org/10.2475/ajs.s4-35.210.577
  5. Brown, W.L. (1967) A reinterpretation of monalbite. Min. Mag., 36, 80-82 https://doi.org/10.1180/minmag.1967.036.277.12
  6. Brown, W.L., Openshaw, R.E., McMillan, P.F. and Henderson, C.M.B. (1984) A review of the expansion behavior of alkali feldspars: Coupled variations in cell parameters and possible phase transitions. Am. Miner., 69, 1058-1071
  7. Deer, W.A., Howie, R.A. and Zussman, J. (2001) Rock-Forming Minerals, Vol. 4A, 2nd eds., Frame-work Silicates: Feldspars, The Geological Society, London, 972p
  8. Goldsmith, J.R. and Jenkins, D.M. (1985) The high-low albite relations revealed by reversal of degree of order at high pressures. Am. Miner., 70, 911-923
  9. Greenwood, J.P. and Hess, P.C. (1998) Congruent melting kinetics of albite: theory and experiment. J. Geophys. Res., 103, B12, 29815-29828 https://doi.org/10.1029/98JB02300
  10. Grundy, H.D. and Brown, W.L. (1969) A high-temperature X-ray study of the equilibrium forms of albite. Min. Mag., 37, 156-172 https://doi.org/10.1180/minmag.1969.037.286.02
  11. Harlow, G.E. and Brown, G.E. (1980) Low albite: an X-ray and neutron diffraction study. Am. Miner., 65, 986-995
  12. HochelIa, M.P., Eggleston, C.M., Elings, V.B. and Thompson, M.S. (1990) Atomic structure and morphology of the albite {010} surface: An atomic-froce microscope and electron diffraction study. Am. Miner., 75, 723-730
  13. Kim, Y.J. and Kriven W.M. (1995) A transmission electron microscopy study on the decomposition of synthetic hillebrandite ($Ca_{2}SiO_{4} {\cdot} H_{2}O$). J. Mater. Res., 10, 3084-3095 https://doi.org/10.1557/JMR.1995.3084
  14. Kozu, S. and Endo, Y. (1920) Preliminary note on the X-ray analysis of moonstone and adularia. J. Geol. Soc. (Tokyo) 27, 365-376. (In Japanese)
  15. Kozu, S. and Endo, Y. (1921) X-ray analysis of adularia and moonstone, and the influence of temperature on the atomic arrangement of these minerals. Sci. Repts. Tohoku Imp. Univ., Ser. 3, 1, 1-17
  16. Kozu, S. and Suzuki, M. (1925) The influence of temperature on the optic axial angle of adularia, yellow orthoclase, and moonstone. Sci. Repts. Tohoku Imp. Univ., Ser. 3, 2, 187-201
  17. Laves, F. (1960) Al/Si-Verteilungen, Phasen- Tranformationen und Namen der Alkalifeldspate. Zeit. Krist., 113, 265-296 https://doi.org/10.1524/zkri.1960.113.1-6.265
  18. McConnell, J.D.C. (1985) Symmetry aspects of order-disorder and the application of Landau theory. In: Kieffer, S.W. and Navortsky, A (eds.) Microscopic to Macroscopic, Reviews in Mineralogy, 14, Mineral. Soc. Am., 165-186
  19. McLaren, A.C. (1984) Transmission electron microscope investigation of the microstructures of microclines. In: Brown, W.L. (ed.) Feldspars and Feldspathoids, Reidel, Dordrecht, Netherland, 373-409
  20. Navrotsky, A., Capobianco, C and Stebbins, J. (1982). Some thermodynamic and experimental constraints on the melting of albite at atmospheric and high pressure. J. Geol., 90, 679-698 https://doi.org/10.1086/628724
  21. Nakvasil, H. and Carroll, W.J. (1996) Experimental constraints on th compositional evolutions of crustal magmas. Trans. Roy. Soc. Edinbrugh Earth Sci., 87, 139-156 https://doi.org/10.1017/S0263593300006556
  22. Parsons, I. (ed) (1994) Feldspars and Their Reactions. Kluwer Academic Publishers, 650p
  23. Sanchez-Munoz, L., Nistor, L., Van Tendello, G. and Sanz, J. (1998) Modulated structures in KAISi308: A study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy. J. Electron Microscopy, 47, 17-28 https://doi.org/10.1093/oxfordjournals.jmicro.a023555
  24. Saucier, H. and Sap levitch, A. (1962) La dilatation thermique des feldspaths. Norsk Geol. Tidsskr., 42, 224-43
  25. Smith, J.Y. and Brown, W.L. (1988) Feldspar Mineralogy. Springer-Verlag, 828p
  26. Stewart, D.B. and Limbach, D.V. (1967) Thermal expansion of low and high albite. Am. Miner., 52, 389-413
  27. Stewart, D.B. and Ribbe, P.H. (1969) Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am. J.. Sci., 267-A, 444-462
  28. Su, S.C., Ribbe, P.H. and Bloss, F.D. (1986) Alkali feldspars: structural state determined from composition and optic axial angle 2V. Am. Miner., 71, 1285-1296
  29. Xu, H., Veblen, R.D., Buseck, P. and Ramakrishna, B.S. (2000) TEM and SFM of exsolution and twinning in an alkali feldspar. Am. Miner., 85, 509-514 https://doi.org/10.2138/am-2000-0412