DOI QR코드

DOI QR Code

Effect of Ga Addition on the Electrical and Structural Properties of (Zn,Mg)O Transparent Electrode Films

Ga 첨가량이 (Zn,Mg)O 투명전극 막의 전기적, 결정학적 특성에 미치는 영향

  • Suh, Kwang-Jong (Department of Electrical and Electronics Engineering, Toyohashi University of Technology) ;
  • Wakahara, Akihiro (Department of Electrical and Electronics Engineering, Toyohashi University of Technology) ;
  • Yoshida, Akira (Department of Electrical and Electronics Engineering, Toyohashi University of Technology)
  • Published : 2005.08.01

Abstract

(Zn,Mg)O (ZMO) thin films doped with Ga $(0\~0.03mol\%)$ in the target source were prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$, and the effect of Ga contents on the properties of the electrical, optical and crystal properties of the deposited films was investigated. From X-ray diffraction patterns, ZMO film doped with $0.02 mol\%$ Ga showed crystal structure with c-axis preferred orientation, showing only the (0002) and (0004) diffraction peaks. In contrast, ZMO film doped with $Ga=0.03 mol\%$ showed a randomly oriented crystal structure. All the samples were highly transparent, showing the transmittance values of above $85\%$ in the visible region. For all the Ga doped ZMO films, the value of energy band gap was found to be about 3.5 eV, regardless of their Ga contents. From the Hall measurements, the resistivity and the carrier density for the ZMO film doped with $0.01 mol\%$ Ga were about $5\times10^{-4}\Omega-cm$ and $2\times10^{21}cm^{-3}$, respectively.

Keywords

References

  1. D. G. Thomas, J. Phys. Chem. Solids, 15, 86 (1960) https://doi.org/10.1016/0022-3697(60)90104-9
  2. Y. S. Park, C. W. Litton, T. C. Collins and D. C. Reynolds, Phys Rev., 143, 512 (1966) https://doi.org/10.1103/PhysRev.143.512
  3. Z. K. Tang, P. Yu, G. K. L. Wong, M. Kawasaki, A. Ohtomo. H, Koinuma, and Y. Segawa, Solid State Commun., 103, 459 (1997) https://doi.org/10.1016/S0038-1098(97)00216-0
  4. Y. Chen, D. M. Bangnail, H. Koh, K. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys., 84, 3912 (1998) https://doi.org/10.1063/1.368595
  5. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch, Phys, Rev., B60, 753 (1999) https://doi.org/10.1103/PhysRevB.60.R753
  6. D. M. Bagnail, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997) https://doi.org/10.1063/1.118824
  7. J. J. Suh, J. Microelectronic & Packaging Soc., 12(1), 73 (2005)
  8. W. I. Park, S. An, G. Yi and H. M. Jang, J. Mater, Res., 16, 1358 (2001) https://doi.org/10.1557/JMR.2001.0190
  9. V. Craciun, J. Elders, J. G. E. Gardeniers and I. W. Boyd, Appl. Phys. Lett., 65, 2963 (1994) https://doi.org/10.1063/1.112478
  10. T. Omata, N. Ueda, K. Ueda and U. Kawazoe, Appl. Phys. Lett., 64, 1077 (1994) https://doi.org/10.1063/1.110937
  11. A. Ohtomo, M. Kawasaki and T. Koida, Appl, Phys. Lett., 72, 2466 (1998) https://doi.org/10.1063/1.121384
  12. R. Katouda, Semiconductor Evaluation Technology, Sangyotosyo p. 168 (1989)
  13. D. Jiles, Introduction to the Electronic Preoperties of Materials, Chapman & Hall Publishing, p. 13 (1995)